mgbam commited on
Commit
583310d
Β·
verified Β·
1 Parent(s): 256b0b9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +168 -102
app.py CHANGED
@@ -1,9 +1,23 @@
1
  # app.py
2
 
3
- from typing import Optional, Dict, List, Tuple
4
- import gradio as gr
 
 
 
 
 
5
 
6
- from constants import HTML_SYSTEM_PROMPT, AVAILABLE_MODELS, DEMO_LIST
 
 
 
 
 
 
 
 
 
7
  from hf_client import get_inference_client
8
  from tavily_search import enhance_query_with_search
9
  from utils import (
@@ -14,122 +28,174 @@ from utils import (
14
  history_to_chatbot_messages,
15
  remove_code_block,
16
  parse_transformers_js_output,
17
- format_transformers_js_output
18
  )
19
- from deploy import send_to_sandbox, handle_load_project
20
 
21
- # Type aliases
22
  History = List[Tuple[str, str]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- # Core generation function
25
  def generation_code(
26
  query: Optional[str],
27
- image: Optional[gr.Image],
28
  file: Optional[str],
29
  website_url: Optional[str],
30
- _setting: Dict[str, str],
31
- _history: Optional[History],
32
- _current_model: Dict,
33
  enable_search: bool,
34
  language: str,
35
- provider: str
36
  ) -> Tuple[str, History, str, List[Dict[str, str]]]:
37
-
38
- if query is None:
39
- query = ''
40
- if _history is None:
41
- _history = []
42
-
43
- system_prompt = _setting.get('system', HTML_SYSTEM_PROMPT)
44
- messages = history_to_messages(_history, system_prompt)
45
-
46
- if file:
47
- file_text = extract_text_from_file(file)
48
- if file_text:
49
- query += f"\n\n[Reference file content below]\n{file_text[:5000]}"
50
-
51
- if website_url:
52
- website_text = extract_website_content(website_url)
53
- if not website_text.startswith("Error"):
54
- query += f"\n\n[Website content below]\n{website_text[:8000]}"
55
-
56
- final_query = enhance_query_with_search(query, enable_search)
57
- messages.append({'role': 'user', 'content': final_query})
58
-
59
- client = get_inference_client(_current_model['id'], provider)
60
- completion = client.chat.completions.create(
61
- model=_current_model['id'],
62
- messages=messages,
63
- max_tokens=10000
64
- )
65
- content = completion.choices[0].message.content
66
-
67
- has_existing = bool(_history and _history[-1][1])
68
- if language == 'transformers.js':
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  files = parse_transformers_js_output(content)
70
- code_str = format_transformers_js_output(files)
71
- sandbox_html = send_to_sandbox(files['index.html'])
72
  else:
73
- clean = remove_code_block(content)
74
- if has_existing and not clean.strip().startswith('<!DOCTYPE'):
75
- clean = apply_search_replace_changes(_history[-1][1], clean)
76
- code_str = clean
77
- sandbox_html = send_to_sandbox(clean) if language == 'html' else ''
78
-
79
- new_history = _history + [(query, code_str)]
80
- chat_msgs = history_to_chatbot_messages(new_history)
81
-
82
- return code_str, new_history, sandbox_html, chat_msgs
83
-
84
- with gr.Blocks(
85
- theme=gr.themes.Base(),
86
- title="AnyCoder - AI Code Generator"
87
- ) as demo:
 
 
 
 
 
 
88
  history_state = gr.State([])
89
- setting_state = gr.State({'system': HTML_SYSTEM_PROMPT})
90
- current_model = gr.State(AVAILABLE_MODELS[9])
91
-
92
- with gr.Sidebar():
93
- gr.LoginButton()
94
- load_project_url = gr.Textbox(label="Hugging Face Space URL")
95
- load_project_btn = gr.Button("Import Project")
96
- load_project_status = gr.Markdown(visible=False)
97
-
98
- input_box = gr.Textbox(label="What to build?", lines=3)
99
- language_dropdown = gr.Dropdown(choices=["html", "python", "transformers.js"], value="html")
100
- website_input = gr.Textbox(label="Website URL")
101
- file_input = gr.File(label="Reference file")
102
- image_input = gr.Image(label="Design image")
103
- search_toggle = gr.Checkbox(label="Web search")
104
- model_dropdown = gr.Dropdown(choices=[m['name'] for m in AVAILABLE_MODELS], value=AVAILABLE_MODELS[9]['name'])
105
-
106
- generate_btn = gr.Button("Generate")
107
- clear_btn = gr.Button("Clear")
108
-
109
- with gr.Column():
110
- with gr.Tabs():
111
- with gr.Tab("Code"):
112
- code_output = gr.Code(label="Generated code")
113
- with gr.Tab("Preview"):
114
- preview = gr.HTML(label="Live preview")
115
- with gr.Tab("History"):
116
- history_output = gr.Chatbot()
117
-
118
- load_project_btn.click(
119
- fn=handle_load_project,
120
- inputs=[load_project_url],
121
- outputs=[load_project_status, code_output, preview, load_project_url, history_state, history_output]
122
- )
123
-
124
- generate_btn.click(
 
 
 
 
 
 
 
 
125
  fn=generation_code,
126
- inputs=[input_box, image_input, file_input, website_input,
127
- setting_state, history_state, current_model,
128
- search_toggle, language_dropdown, gr.State('auto')],
129
- outputs=[code_output, history_state, preview, history_output]
130
  )
131
 
132
- clear_btn.click(lambda: ([], [], "", []), outputs=[history_state, history_output, preview, code_output])
 
 
 
 
133
 
134
  if __name__ == "__main__":
135
  demo.queue().launch()
 
1
  # app.py
2
 
3
+ """
4
+ Main application file for SHASHA AI, a Gradio-based AI code generation tool.
5
+
6
+ Provides a UI for generating code in many languages using various AI models.
7
+ Supports text prompts, file uploads, website scraping, optional web search,
8
+ and live previews of HTML output.
9
+ """
10
 
11
+ import gradio as gr
12
+ from typing import Optional, Dict, List, Tuple, Any
13
+
14
+ # --- Local module imports ---
15
+ from constants import (
16
+ HTML_SYSTEM_PROMPT,
17
+ TRANSFORMERS_JS_SYSTEM_PROMPT,
18
+ AVAILABLE_MODELS,
19
+ DEMO_LIST,
20
+ )
21
  from hf_client import get_inference_client
22
  from tavily_search import enhance_query_with_search
23
  from utils import (
 
28
  history_to_chatbot_messages,
29
  remove_code_block,
30
  parse_transformers_js_output,
31
+ format_transformers_js_output,
32
  )
33
+ from deploy import send_to_sandbox
34
 
35
+ # --- Type aliases ---
36
  History = List[Tuple[str, str]]
37
+ Model = Dict[str, Any]
38
+
39
+ # --- Supported languages for dropdown ---
40
+ SUPPORTED_LANGUAGES = [
41
+ "python", "c", "cpp", "markdown", "latex", "json", "html", "css",
42
+ "javascript", "jinja2", "typescript", "yaml", "dockerfile", "shell",
43
+ "r", "sql", "sql-msSQL", "sql-mySQL", "sql-mariaDB", "sql-sqlite",
44
+ "sql-cassandra", "sql-plSQL", "sql-hive", "sql-pgSQL", "sql-gql",
45
+ "sql-gpSQL", "sql-sparkSQL", "sql-esper"
46
+ ]
47
+
48
+ def get_model_details(name: str) -> Optional[Model]:
49
+ for m in AVAILABLE_MODELS:
50
+ if m["name"] == name:
51
+ return m
52
+ return None
53
 
 
54
  def generation_code(
55
  query: Optional[str],
 
56
  file: Optional[str],
57
  website_url: Optional[str],
58
+ current_model: Model,
 
 
59
  enable_search: bool,
60
  language: str,
61
+ history: Optional[History],
62
  ) -> Tuple[str, History, str, List[Dict[str, str]]]:
63
+ query = query or ""
64
+ history = history or []
65
+ try:
66
+ # Choose system prompt based on language
67
+ if language == "html":
68
+ system_prompt = HTML_SYSTEM_PROMPT
69
+ elif language == "transformers.js":
70
+ system_prompt = TRANSFORMERS_JS_SYSTEM_PROMPT
71
+ else:
72
+ # Generic fallback prompt
73
+ system_prompt = (
74
+ f"You are an expert {language} developer. "
75
+ f"Write clean, idiomatic {language} code based on the user's request."
76
+ )
77
+
78
+ model_id = current_model["id"]
79
+ # Determine provider
80
+ if model_id.startswith("openai/") or model_id in {"gpt-4", "gpt-3.5-turbo"}:
81
+ provider = "openai"
82
+ elif model_id.startswith("gemini/") or model_id.startswith("google/"):
83
+ provider = "gemini"
84
+ elif model_id.startswith("fireworks-ai/"):
85
+ provider = "fireworks-ai"
86
+ else:
87
+ provider = "auto"
88
+
89
+ # Build message history
90
+ msgs = history_to_messages(history, system_prompt)
91
+ context = query
92
+ if file:
93
+ ftext = extract_text_from_file(file)
94
+ context += f"\n\n[Attached file]\n{ftext[:5000]}"
95
+ if website_url:
96
+ wtext = extract_website_content(website_url)
97
+ if not wtext.startswith("Error"):
98
+ context += f"\n\n[Website content]\n{wtext[:8000]}"
99
+ final_q = enhance_query_with_search(context, enable_search)
100
+ msgs.append({"role": "user", "content": final_q})
101
+
102
+ # Call the model
103
+ client = get_inference_client(model_id, provider)
104
+ resp = client.chat.completions.create(
105
+ model=model_id,
106
+ messages=msgs,
107
+ max_tokens=16000,
108
+ temperature=0.1
109
+ )
110
+ content = resp.choices[0].message.content
111
+
112
+ except Exception as e:
113
+ err = f"❌ **Error:**\n```\n{e}\n```"
114
+ history.append((query, err))
115
+ return "", history, "", history_to_chatbot_messages(history)
116
+
117
+ # Process model output
118
+ if language == "transformers.js":
119
  files = parse_transformers_js_output(content)
120
+ code = format_transformers_js_output(files)
121
+ preview = send_to_sandbox(files.get("index.html", ""))
122
  else:
123
+ cleaned = remove_code_block(content)
124
+ if history and history[-1][1] and not history[-1][1].startswith("❌"):
125
+ code = apply_search_replace_changes(history[-1][1], cleaned)
126
+ else:
127
+ code = cleaned
128
+ preview = send_to_sandbox(code) if language == "html" else ""
129
+
130
+ new_hist = history + [(query, code)]
131
+ chat = history_to_chatbot_messages(new_hist)
132
+ return code, new_hist, preview, chat
133
+
134
+ # --- Custom CSS ---
135
+ CUSTOM_CSS = """
136
+ body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; }
137
+ #main_title { text-align: center; font-size: 2.5rem; margin-top: 1.5rem; }
138
+ #subtitle { text-align: center; color: #4a5568; margin-bottom: 2.5rem; }
139
+ .gradio-container { background-color: #f7fafc; }
140
+ #gen_btn { box-shadow: 0 4px 6px rgba(0,0,0,0.1); }
141
+ """
142
+
143
+ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), css=CUSTOM_CSS, title="Shasha AI") as demo:
144
  history_state = gr.State([])
145
+ initial_model = AVAILABLE_MODELS[0]
146
+ model_state = gr.State(initial_model)
147
+
148
+ gr.Markdown("# πŸš€ Shasha AI", elem_id="main_title")
149
+ gr.Markdown("Your AI partner for generating, modifying, and understanding code.", elem_id="subtitle")
150
+
151
+ with gr.Row():
152
+ with gr.Column(scale=1):
153
+ gr.Markdown("### 1. Select Model")
154
+ model_dd = gr.Dropdown(
155
+ choices=[m["name"] for m in AVAILABLE_MODELS],
156
+ value=initial_model["name"],
157
+ label="AI Model"
158
+ )
159
+
160
+ gr.Markdown("### 2. Provide Context")
161
+ with gr.Tabs():
162
+ with gr.Tab("πŸ“ Prompt"):
163
+ prompt_in = gr.Textbox(lines=7, placeholder="Describe your request...", show_label=False)
164
+ with gr.Tab("πŸ“„ File"):
165
+ file_in = gr.File(type="filepath")
166
+ with gr.Tab("🌐 Website"):
167
+ url_in = gr.Textbox(placeholder="https://example.com")
168
+
169
+ gr.Markdown("### 3. Configure Output")
170
+ lang_dd = gr.Dropdown(SUPPORTED_LANGUAGES, value="html", label="Target Language")
171
+ search_chk = gr.Checkbox(label="Enable Web Search")
172
+
173
+ with gr.Row():
174
+ clr_btn = gr.Button("Clear Session", variant="secondary")
175
+ gen_btn = gr.Button("Generate Code", variant="primary", elem_id="gen_btn")
176
+
177
+ with gr.Column(scale=2):
178
+ with gr.Tabs():
179
+ with gr.Tab("πŸ’» Code"):
180
+ code_out = gr.Code(language="html", interactive=True)
181
+ with gr.Tab("πŸ‘οΈ Live Preview"):
182
+ preview_out = gr.HTML()
183
+ with gr.Tab("πŸ“œ History"):
184
+ chat_out = gr.Chatbot(type="messages")
185
+
186
+ model_dd.change(lambda n: get_model_details(n) or initial_model, inputs=[model_dd], outputs=[model_state])
187
+
188
+ gen_btn.click(
189
  fn=generation_code,
190
+ inputs=[prompt_in, file_in, url_in, model_state, search_chk, lang_dd, history_state],
191
+ outputs=[code_out, history_state, preview_out, chat_out],
 
 
192
  )
193
 
194
+ clr_btn.click(
195
+ lambda: ("", None, "", [], "", "", []),
196
+ outputs=[prompt_in, file_in, url_in, history_state, code_out, preview_out, chat_out],
197
+ queue=False,
198
+ )
199
 
200
  if __name__ == "__main__":
201
  demo.queue().launch()