Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,22 @@
|
|
1 |
-
# app.py
|
2 |
"""
|
3 |
-
AnyCoder / Shasha AI –
|
4 |
|
5 |
-
•
|
6 |
-
• Exposes one JSON endpoint
|
7 |
calls to run model inference.
|
8 |
-
• Keeps all existing helpers (hf_client, inference, utils, deploy …).
|
9 |
"""
|
10 |
|
11 |
from pathlib import Path
|
12 |
-
from typing import List, Tuple
|
13 |
|
14 |
import gradio as gr
|
15 |
|
16 |
-
# ---- local helpers
|
17 |
-
from inference
|
18 |
-
from tavily_search
|
19 |
-
from deploy
|
20 |
-
from models
|
21 |
-
from utils
|
22 |
extract_text_from_file,
|
23 |
extract_website_content,
|
24 |
history_to_messages,
|
@@ -52,10 +50,10 @@ def generate(
|
|
52 |
enable_search: bool,
|
53 |
history: History | None,
|
54 |
) -> Tuple[str, History]:
|
55 |
-
"""Called by the JS front‑end via
|
56 |
history = history or []
|
57 |
|
58 |
-
#
|
59 |
system_prompt = SYSTEM_PROMPTS.get(language, f"You are an expert {language} developer.")
|
60 |
messages = history_to_messages(history, system_prompt)
|
61 |
|
@@ -65,20 +63,20 @@ def generate(
|
|
65 |
ctx_parts.append("[File]")
|
66 |
ctx_parts.append(extract_text_from_file(file_path)[:5000])
|
67 |
if website_url:
|
68 |
-
|
69 |
-
if not
|
70 |
ctx_parts.append("[Website]")
|
71 |
-
ctx_parts.append(
|
72 |
|
73 |
user_query = "\n\n".join(filter(None, ctx_parts))
|
74 |
user_query = enhance_query_with_search(user_query, enable_search)
|
75 |
messages.append({"role": "user", "content": user_query})
|
76 |
|
77 |
-
#
|
78 |
model: ModelInfo = find_model(model_id) or AVAILABLE_MODELS[0]
|
79 |
answer = chat_completion(model.id, messages)
|
80 |
|
81 |
-
#
|
82 |
if language == "transformers.js":
|
83 |
files = parse_transformers_js_output(answer)
|
84 |
code = format_transformers_js_output(files)
|
@@ -96,8 +94,8 @@ HTML_SOURCE = Path("index.html").read_text(encoding="utf‑8")
|
|
96 |
|
97 |
# ------------------- Gradio UI ---------------------------------------------
|
98 |
with gr.Blocks(css="body{margin:0}", title="AnyCoder AI") as demo:
|
99 |
-
# 1 visible: your
|
100 |
-
gr.HTML(HTML_SOURCE
|
101 |
|
102 |
# 2 hidden: API inputs / outputs
|
103 |
with gr.Group(visible=False) as api:
|
|
|
|
|
1 |
"""
|
2 |
+
AnyCoder / Shasha AI – Gradio back‑end
|
3 |
|
4 |
+
• Serves the custom front‑end shipped in index.html (+ static/style.css & static/index.js).
|
5 |
+
• Exposes one JSON endpoint (`POST /run/predict`) that the JS front‑end
|
6 |
calls to run model inference.
|
|
|
7 |
"""
|
8 |
|
9 |
from pathlib import Path
|
10 |
+
from typing import List, Tuple
|
11 |
|
12 |
import gradio as gr
|
13 |
|
14 |
+
# ---- local helpers --------------------------------------------------------
|
15 |
+
from inference import chat_completion
|
16 |
+
from tavily_search import enhance_query_with_search
|
17 |
+
from deploy import send_to_sandbox
|
18 |
+
from models import AVAILABLE_MODELS, find_model, ModelInfo
|
19 |
+
from utils import (
|
20 |
extract_text_from_file,
|
21 |
extract_website_content,
|
22 |
history_to_messages,
|
|
|
50 |
enable_search: bool,
|
51 |
history: History | None,
|
52 |
) -> Tuple[str, History]:
|
53 |
+
"""Called by the JS front‑end via POST /run/predict."""
|
54 |
history = history or []
|
55 |
|
56 |
+
# ----- build system + messages -----------------------------------------
|
57 |
system_prompt = SYSTEM_PROMPTS.get(language, f"You are an expert {language} developer.")
|
58 |
messages = history_to_messages(history, system_prompt)
|
59 |
|
|
|
63 |
ctx_parts.append("[File]")
|
64 |
ctx_parts.append(extract_text_from_file(file_path)[:5000])
|
65 |
if website_url:
|
66 |
+
site_html = extract_website_content(website_url)
|
67 |
+
if not site_html.startswith("Error"):
|
68 |
ctx_parts.append("[Website]")
|
69 |
+
ctx_parts.append(site_html[:8000])
|
70 |
|
71 |
user_query = "\n\n".join(filter(None, ctx_parts))
|
72 |
user_query = enhance_query_with_search(user_query, enable_search)
|
73 |
messages.append({"role": "user", "content": user_query})
|
74 |
|
75 |
+
# ----- run model --------------------------------------------------------
|
76 |
model: ModelInfo = find_model(model_id) or AVAILABLE_MODELS[0]
|
77 |
answer = chat_completion(model.id, messages)
|
78 |
|
79 |
+
# ----- post‑process output ---------------------------------------------
|
80 |
if language == "transformers.js":
|
81 |
files = parse_transformers_js_output(answer)
|
82 |
code = format_transformers_js_output(files)
|
|
|
94 |
|
95 |
# ------------------- Gradio UI ---------------------------------------------
|
96 |
with gr.Blocks(css="body{margin:0}", title="AnyCoder AI") as demo:
|
97 |
+
# 1 visible: your custom front‑end
|
98 |
+
gr.HTML(HTML_SOURCE) # <- sanitize=False removed
|
99 |
|
100 |
# 2 hidden: API inputs / outputs
|
101 |
with gr.Group(visible=False) as api:
|