Update app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,59 @@
|
|
|
|
1 |
"""
|
2 |
-
AnyCoderΒ /Β ShashaΒ AI β
|
3 |
-
|
4 |
-
β’
|
5 |
-
β’ Exposes one JSON endpointΒ (`POSTΒ /run/predict`) that the JS frontβend
|
6 |
-
calls to run model inference.
|
7 |
"""
|
8 |
-
|
9 |
from pathlib import Path
|
10 |
from typing import List, Tuple
|
11 |
|
12 |
import gradio as gr
|
13 |
|
14 |
-
# ---- local helpers --------------------------------------------------------
|
15 |
from inference import chat_completion
|
16 |
from tavily_search import enhance_query_with_search
|
17 |
-
from deploy import send_to_sandbox
|
18 |
from models import AVAILABLE_MODELS, find_model, ModelInfo
|
19 |
from utils import (
|
20 |
-
extract_text_from_file,
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
apply_search_replace_changes,
|
25 |
-
remove_code_block,
|
26 |
-
parse_transformers_js_output,
|
27 |
-
format_transformers_js_output,
|
28 |
)
|
29 |
|
30 |
-
# ------------------- constants ---------------------------------------------
|
31 |
SYSTEM_PROMPTS = {
|
32 |
-
"html":
|
33 |
-
|
34 |
-
"wrapped in ```html ...```."
|
35 |
-
),
|
36 |
-
"transformers.js": (
|
37 |
-
"Generate THREE separate files (index.html / index.js / style.css) "
|
38 |
-
"as three fenced blocks."
|
39 |
-
),
|
40 |
}
|
41 |
History = List[Tuple[str, str]]
|
42 |
|
43 |
-
#
|
44 |
-
def generate(
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
) -> Tuple[str, History]:
|
53 |
-
"""Called by the JS frontβend via POSTΒ /run/predict."""
|
54 |
history = history or []
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
system_prompt = SYSTEM_PROMPTS.get(language, f"You are an expert {language} developer.")
|
58 |
-
messages = history_to_messages(history, system_prompt)
|
59 |
-
|
60 |
-
ctx_parts: list[str] = [prompt.strip()]
|
61 |
-
|
62 |
if file_path:
|
63 |
-
|
64 |
-
ctx_parts.append(extract_text_from_file(file_path)[:5000])
|
65 |
if website_url:
|
66 |
-
|
67 |
-
if not
|
68 |
-
|
69 |
-
ctx_parts.append(site_html[:8000])
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
messages.append({"role": "user", "content":
|
74 |
|
75 |
-
# ----- run model --------------------------------------------------------
|
76 |
model: ModelInfo = find_model(model_id) or AVAILABLE_MODELS[0]
|
77 |
answer = chat_completion(model.id, messages)
|
78 |
|
79 |
-
# ----- postβprocess output ---------------------------------------------
|
80 |
if language == "transformers.js":
|
81 |
files = parse_transformers_js_output(answer)
|
82 |
code = format_transformers_js_output(files)
|
@@ -89,35 +66,27 @@ def generate(
|
|
89 |
history.append((prompt, code))
|
90 |
return code, history
|
91 |
|
92 |
-
#
|
93 |
-
HTML_SOURCE = Path("index.html").read_text(encoding="utf
|
94 |
|
95 |
-
# ------------------- Gradio UI ---------------------------------------------
|
96 |
with gr.Blocks(css="body{margin:0}", title="AnyCoderΒ AI") as demo:
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
search_in = gr.Checkbox()
|
108 |
-
hist_state = gr.State([])
|
109 |
-
|
110 |
code_out, hist_out = gr.Textbox(), gr.State([])
|
111 |
|
112 |
-
#
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
prompt_in, file_in, url_in,
|
118 |
-
model_in, lang_in, search_in, hist_state
|
119 |
-
],
|
120 |
-
outputs=[code_out, hist_out],
|
121 |
api_name="predict",
|
122 |
)
|
123 |
|
|
|
1 |
+
# app.py ββ root of the repo
|
2 |
"""
|
3 |
+
AnyCoderΒ /Β ShashaΒ AI β Gradio backβend
|
4 |
+
β’ Hosts the custom HTML/JS/CSS in /static
|
5 |
+
β’ Exposes POST /run/predict for the browserβside fetch()
|
|
|
|
|
6 |
"""
|
7 |
+
from __future__ import annotations
|
8 |
from pathlib import Path
|
9 |
from typing import List, Tuple
|
10 |
|
11 |
import gradio as gr
|
12 |
|
|
|
13 |
from inference import chat_completion
|
14 |
from tavily_search import enhance_query_with_search
|
|
|
15 |
from models import AVAILABLE_MODELS, find_model, ModelInfo
|
16 |
from utils import (
|
17 |
+
extract_text_from_file, extract_website_content,
|
18 |
+
history_to_messages, history_to_chatbot_messages,
|
19 |
+
apply_search_replace_changes, remove_code_block,
|
20 |
+
parse_transformers_js_output, format_transformers_js_output,
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
|
|
|
23 |
SYSTEM_PROMPTS = {
|
24 |
+
"html": "ONLY USE HTML, CSS &β―JS. Return ONE file wrapped in ```html```.",
|
25 |
+
"transformers.js":"Generate THREE files (index.html / index.js / style.css) as fenced blocks."
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
}
|
27 |
History = List[Tuple[str, str]]
|
28 |
|
29 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
30 |
+
def generate(prompt:str,
|
31 |
+
file_path:str|None,
|
32 |
+
website_url:str|None,
|
33 |
+
model_id:str,
|
34 |
+
language:str,
|
35 |
+
enable_search:bool,
|
36 |
+
history:History|None) -> Tuple[str,History]:
|
37 |
+
"""Invoked by the JS frontβend."""
|
|
|
|
|
38 |
history = history or []
|
39 |
+
sys_prompt = SYSTEM_PROMPTS.get(language, f"You are an expert {language} developer.")
|
40 |
+
messages = history_to_messages(history, sys_prompt)
|
41 |
|
42 |
+
ctx: list[str] = [prompt.strip()]
|
|
|
|
|
|
|
|
|
|
|
43 |
if file_path:
|
44 |
+
ctx.append("[File]\n" + extract_text_from_file(file_path)[:5_000])
|
|
|
45 |
if website_url:
|
46 |
+
html = extract_website_content(website_url)
|
47 |
+
if not html.startswith("Error"):
|
48 |
+
ctx.append("[Website]\n" + html[:8_000])
|
|
|
49 |
|
50 |
+
user_q = "\n\n".join(filter(None, ctx))
|
51 |
+
user_q = enhance_query_with_search(user_q, enable_search)
|
52 |
+
messages.append({"role": "user", "content": user_q})
|
53 |
|
|
|
54 |
model: ModelInfo = find_model(model_id) or AVAILABLE_MODELS[0]
|
55 |
answer = chat_completion(model.id, messages)
|
56 |
|
|
|
57 |
if language == "transformers.js":
|
58 |
files = parse_transformers_js_output(answer)
|
59 |
code = format_transformers_js_output(files)
|
|
|
66 |
history.append((prompt, code))
|
67 |
return code, history
|
68 |
|
69 |
+
# βββββββββββββββββββββββββββββββββββββββββββοΏ½οΏ½βββββββββββββββββββββββββββββββββ
|
70 |
+
HTML_SOURCE = Path("static/index.html").read_text(encoding="utf-8")
|
71 |
|
|
|
72 |
with gr.Blocks(css="body{margin:0}", title="AnyCoderΒ AI") as demo:
|
73 |
+
gr.HTML(HTML_SOURCE) # the whole UI
|
74 |
+
# hidden I/O elements for the JS fetch()
|
75 |
+
with gr.Group(visible=False):
|
76 |
+
prompt_in = gr.Textbox()
|
77 |
+
file_in = gr.File()
|
78 |
+
url_in = gr.Textbox()
|
79 |
+
model_in = gr.Textbox()
|
80 |
+
lang_in = gr.Textbox()
|
81 |
+
search_in = gr.Checkbox()
|
82 |
+
hist_state = gr.State([])
|
|
|
|
|
|
|
83 |
code_out, hist_out = gr.Textbox(), gr.State([])
|
84 |
|
85 |
+
gr.Button(visible=False).click( # POST /run/predict
|
86 |
+
generate,
|
87 |
+
[prompt_in, file_in, url_in,
|
88 |
+
model_in, lang_in, search_in, hist_state],
|
89 |
+
[code_out, hist_out],
|
|
|
|
|
|
|
|
|
90 |
api_name="predict",
|
91 |
)
|
92 |
|