Update app.py
Browse files
app.py
CHANGED
@@ -10,11 +10,10 @@ import matplotlib.pyplot as plt
|
|
10 |
import seaborn as sns
|
11 |
import logging
|
12 |
import re
|
13 |
-
from
|
14 |
-
from typing import Optional, Dict, List
|
15 |
from openai import OpenAI
|
16 |
|
17 |
-
# Configure
|
18 |
logging.basicConfig(
|
19 |
level=logging.INFO,
|
20 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
@@ -23,15 +22,17 @@ logging.basicConfig(
|
|
23 |
logger = logging.getLogger("PRIS")
|
24 |
|
25 |
# -----------------------------
|
26 |
-
# GLOBAL CONSTANTS
|
27 |
# -----------------------------
|
28 |
API_ENDPOINTS = {
|
29 |
"clinical_trials": "https://clinicaltrials.gov/api/v2/studies",
|
30 |
"fda_drug_approval": "https://api.fda.gov/drug/label.json",
|
31 |
-
"pubchem": "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{}/JSON"
|
|
|
32 |
}
|
|
|
33 |
DEFAULT_HEADERS = {
|
34 |
-
"User-Agent": "PharmaResearchIntelligenceSuite/
|
35 |
"Accept": "application/json"
|
36 |
}
|
37 |
|
@@ -39,6 +40,7 @@ DEFAULT_HEADERS = {
|
|
39 |
# SECRETS MANAGEMENT
|
40 |
# -----------------------------
|
41 |
class APIConfigurationError(Exception):
|
|
|
42 |
pass
|
43 |
|
44 |
try:
|
@@ -46,6 +48,7 @@ try:
|
|
46 |
BIOPORTAL_API_KEY = st.secrets["BIOPORTAL_API_KEY"]
|
47 |
PUB_EMAIL = st.secrets["PUB_EMAIL"]
|
48 |
OPENFDA_KEY = st.secrets["OPENFDA_KEY"]
|
|
|
49 |
if not all([OPENAI_API_KEY, BIOPORTAL_API_KEY, PUB_EMAIL, OPENFDA_KEY]):
|
50 |
raise APIConfigurationError("One or more required API credentials are missing.")
|
51 |
except (KeyError, APIConfigurationError) as e:
|
@@ -56,16 +59,26 @@ except (KeyError, APIConfigurationError) as e:
|
|
56 |
# CORE INFRASTRUCTURE
|
57 |
# -----------------------------
|
58 |
class PharmaResearchEngine:
|
59 |
-
"""Core engine for
|
|
|
60 |
def __init__(self):
|
61 |
self.openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
62 |
-
|
63 |
@staticmethod
|
64 |
-
def api_request(endpoint: str,
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
try:
|
67 |
-
response = requests.get(
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
69 |
return response.json()
|
70 |
except requests.exceptions.HTTPError as e:
|
71 |
logger.error(f"HTTP Error {e.response.status_code} for {endpoint} with params {params}")
|
@@ -77,49 +90,34 @@ class PharmaResearchEngine:
|
|
77 |
|
78 |
def get_compound_profile(self, identifier: str) -> Optional[Dict]:
|
79 |
"""
|
80 |
-
Retrieve comprehensive chemical profile from PubChem.
|
81 |
-
|
82 |
"""
|
83 |
if not self._is_valid_compound_input(identifier):
|
84 |
-
msg = (f"
|
85 |
-
"
|
86 |
logger.warning(msg)
|
87 |
st.error(msg)
|
88 |
return None
|
89 |
-
|
90 |
pubchem_url = API_ENDPOINTS["pubchem"].format(identifier)
|
91 |
pubchem_data = self.api_request(pubchem_url)
|
92 |
if not pubchem_data or not pubchem_data.get("PC_Compounds"):
|
93 |
-
|
94 |
-
|
95 |
-
st.error(msg)
|
96 |
return None
|
97 |
-
|
98 |
compound = pubchem_data["PC_Compounds"][0]
|
99 |
-
|
100 |
'molecular_formula': self._extract_property(compound, 'Molecular Formula'),
|
101 |
'iupac_name': self._extract_property(compound, 'IUPAC Name'),
|
102 |
'canonical_smiles': self._extract_property(compound, 'Canonical SMILES'),
|
103 |
'molecular_weight': self._extract_property(compound, 'Molecular Weight'),
|
104 |
'logp': self._extract_property(compound, 'LogP')
|
105 |
}
|
106 |
-
# Validate that we have a plausible SMILES; if not, attempt a fallback search
|
107 |
-
if profile['canonical_smiles'] in ["N/A", ""]:
|
108 |
-
logger.warning("Canonical SMILES is missing, attempting fallback retrieval.")
|
109 |
-
profile['canonical_smiles'] = self._fallback_smiles(compound)
|
110 |
-
return profile
|
111 |
-
|
112 |
-
def _fallback_smiles(self, compound: Dict) -> str:
|
113 |
-
"""Fallback routine to extract a valid SMILES string from alternative PubChem data fields."""
|
114 |
-
# Sometimes the data may be nested in a different property.
|
115 |
-
for prop in compound.get("props", []):
|
116 |
-
val = prop.get("value", {}).get("sval")
|
117 |
-
if val and any(char in val for char in "CNOPS"):
|
118 |
-
return val
|
119 |
-
return "N/A"
|
120 |
|
121 |
def _extract_property(self, compound: Dict, prop_name: str) -> str:
|
122 |
-
"""Helper to extract a property
|
123 |
for prop in compound.get("props", []):
|
124 |
if prop.get("urn", {}).get("label") == prop_name:
|
125 |
return prop["value"].get("sval", "N/A")
|
@@ -128,25 +126,35 @@ class PharmaResearchEngine:
|
|
128 |
@staticmethod
|
129 |
def _is_valid_compound_input(user_input: str) -> bool:
|
130 |
"""
|
131 |
-
|
132 |
-
|
|
|
133 |
"""
|
134 |
-
|
135 |
-
|
136 |
-
if smiles_pattern.fullmatch(user_input.strip()):
|
137 |
-
return True
|
138 |
-
# Block disease terms
|
139 |
disease_terms = ['diabetes', 'cancer', 'hypertension', 'asthma']
|
140 |
-
if any(term in
|
141 |
return False
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
# -----------------------------
|
146 |
# INTELLIGENCE MODULES
|
147 |
# -----------------------------
|
148 |
class ClinicalIntelligence:
|
149 |
-
"""
|
|
|
|
|
|
|
|
|
150 |
def __init__(self):
|
151 |
self.engine = PharmaResearchEngine()
|
152 |
|
@@ -154,9 +162,8 @@ class ClinicalIntelligence:
|
|
154 |
params = {"query.term": query, "retmax": 10} if not query.startswith("NCT") else {"id": query}
|
155 |
trials = self.engine.api_request(API_ENDPOINTS["clinical_trials"], params=params)
|
156 |
if trials is None:
|
157 |
-
|
158 |
-
|
159 |
-
st.error(msg)
|
160 |
return []
|
161 |
return trials.get("studies", [])[:5]
|
162 |
|
@@ -164,6 +171,7 @@ class ClinicalIntelligence:
|
|
164 |
if not OPENFDA_KEY:
|
165 |
st.error("OpenFDA API key not configured.")
|
166 |
return None
|
|
|
167 |
params = {
|
168 |
"api_key": OPENFDA_KEY,
|
169 |
"search": f'openfda.brand_name:"{drug_name}"',
|
@@ -172,54 +180,53 @@ class ClinicalIntelligence:
|
|
172 |
data = self.engine.api_request(API_ENDPOINTS["fda_drug_approval"], params=params)
|
173 |
if data and data.get("results"):
|
174 |
return data["results"][0]
|
175 |
-
logger.warning(f"No FDA data found for
|
176 |
st.error("No FDA regulatory data found for the specified drug.")
|
177 |
return None
|
178 |
|
179 |
class AIDrugInnovator:
|
180 |
-
"""
|
|
|
|
|
|
|
181 |
def __init__(self):
|
182 |
self.engine = PharmaResearchEngine()
|
183 |
-
|
184 |
def generate_strategy(self, target: str, strategy: str) -> str:
|
185 |
-
prompt = f"""
|
186 |
|
187 |
**Target Validation Approach**
|
188 |
-
|
189 |
-
-
|
190 |
-
-
|
191 |
-
-
|
192 |
-
- Collaborative efforts with leading academic and clinical research institutions.
|
193 |
|
194 |
**Lead Optimization Tactics**
|
195 |
-
|
196 |
-
-
|
197 |
-
-
|
198 |
-
-
|
199 |
-
- Regularly review patent landscapes to ensure novelty.
|
200 |
|
201 |
**Clinical Trial Design**
|
202 |
-
|
203 |
-
-
|
204 |
-
-
|
205 |
-
-
|
206 |
-
-
|
207 |
-
We may also incorporate adaptive trial designs to expedite development.
|
208 |
|
209 |
**Regulatory Pathway Analysis**
|
210 |
-
|
211 |
-
-
|
212 |
-
-
|
213 |
-
-
|
214 |
-
- Exploring expedited pathways like Fast Track or Breakthrough Therapy designations.
|
215 |
|
216 |
**Commercial Potential Assessment**
|
217 |
-
|
218 |
-
-
|
219 |
-
-
|
220 |
-
-
|
221 |
|
222 |
-
Please
|
223 |
try:
|
224 |
response = self.engine.openai_client.chat.completions.create(
|
225 |
model="gpt-4",
|
@@ -237,7 +244,11 @@ Please note: This strategy is generated by an AI system leveraging state-of-the-
|
|
237 |
# STREAMLIT INTERFACE
|
238 |
# -----------------------------
|
239 |
class PharmaResearchInterface:
|
240 |
-
"""
|
|
|
|
|
|
|
|
|
241 |
def __init__(self):
|
242 |
self.clinical_intel = ClinicalIntelligence()
|
243 |
self.ai_innovator = AIDrugInnovator()
|
@@ -251,15 +262,16 @@ class PharmaResearchInterface:
|
|
251 |
)
|
252 |
st.markdown("""
|
253 |
<style>
|
254 |
-
.main {background-color: #f0f2f6;
|
255 |
-
.stAlert {padding: 20px;
|
|
|
256 |
</style>
|
257 |
""", unsafe_allow_html=True)
|
258 |
|
259 |
def render(self):
|
260 |
st.title("Next-Generation Pharmaceutical Research Intelligence Suite")
|
261 |
self._render_navigation()
|
262 |
-
|
263 |
def _render_navigation(self):
|
264 |
tabs = st.tabs([
|
265 |
"🚀 Drug Innovation",
|
@@ -325,7 +337,7 @@ class PharmaResearchInterface:
|
|
325 |
|
326 |
def _compound_profiler(self):
|
327 |
st.header("Advanced Multi-Omics Compound Profiler")
|
328 |
-
compound = st.text_input("Analyze Compound:", placeholder="Enter drug name or SMILES (e.g., Aspirin,
|
329 |
if st.button("Profile Compound"):
|
330 |
with st.spinner("Decoding molecular profile..."):
|
331 |
profile = PharmaResearchEngine().get_compound_profile(compound)
|
@@ -334,30 +346,20 @@ class PharmaResearchInterface:
|
|
334 |
with col1:
|
335 |
st.subheader("Structural Insights")
|
336 |
smiles = profile.get('canonical_smiles', '')
|
337 |
-
if smiles != "N/A"
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
# Convert RDKit image to a stream for better handling
|
342 |
-
img = Draw.MolToImage(mol, size=(400, 300))
|
343 |
-
buf = BytesIO()
|
344 |
-
img.save(buf, format="PNG")
|
345 |
-
st.image(buf.getvalue(), caption="2D Molecular Structure")
|
346 |
-
else:
|
347 |
-
st.error("Generated SMILES appears invalid. Please verify the compound input.")
|
348 |
-
except Exception as ex:
|
349 |
-
logger.error(f"Error generating molecular image: {ex}")
|
350 |
-
st.error("Error generating molecular structure image. Verify the SMILES string.")
|
351 |
else:
|
352 |
-
st.error("
|
353 |
with col2:
|
354 |
st.subheader("Physicochemical Profile")
|
355 |
-
st.metric("Molecular Weight", profile.get('molecular_weight',
|
356 |
-
st.metric("LogP", profile.get('logp',
|
357 |
-
st.metric("IUPAC Name", profile.get('iupac_name',
|
358 |
st.code(f"SMILES: {profile.get('canonical_smiles', 'N/A')}")
|
359 |
else:
|
360 |
-
st.warning("Compound profiling failed.
|
361 |
|
362 |
def _regulatory_hub(self):
|
363 |
st.header("Regulatory Intelligence Hub")
|
@@ -375,7 +377,7 @@ class PharmaResearchInterface:
|
|
375 |
def _ai_strategist(self):
|
376 |
st.header("AI Drug Development Strategist")
|
377 |
st.write("Leverage GPT-4 to generate cutting-edge drug development strategies.")
|
378 |
-
target = st.text_input("Enter Target Disease or Pathway:", placeholder="e.g.,
|
379 |
if st.button("Generate AI Strategy"):
|
380 |
with st.spinner("Generating AI-driven strategy..."):
|
381 |
strategy = self.ai_innovator.generate_strategy(target, "First-in-class")
|
|
|
10 |
import seaborn as sns
|
11 |
import logging
|
12 |
import re
|
13 |
+
from typing import Optional, Dict, List, Any
|
|
|
14 |
from openai import OpenAI
|
15 |
|
16 |
+
# Configure advanced logging for full traceability and diagnostics
|
17 |
logging.basicConfig(
|
18 |
level=logging.INFO,
|
19 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
|
22 |
logger = logging.getLogger("PRIS")
|
23 |
|
24 |
# -----------------------------
|
25 |
+
# GLOBAL CONSTANTS
|
26 |
# -----------------------------
|
27 |
API_ENDPOINTS = {
|
28 |
"clinical_trials": "https://clinicaltrials.gov/api/v2/studies",
|
29 |
"fda_drug_approval": "https://api.fda.gov/drug/label.json",
|
30 |
+
"pubchem": "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{}/JSON",
|
31 |
+
# ... other endpoints omitted for brevity ...
|
32 |
}
|
33 |
+
|
34 |
DEFAULT_HEADERS = {
|
35 |
+
"User-Agent": "PharmaResearchIntelligenceSuite/1.0 (Professional Use)",
|
36 |
"Accept": "application/json"
|
37 |
}
|
38 |
|
|
|
40 |
# SECRETS MANAGEMENT
|
41 |
# -----------------------------
|
42 |
class APIConfigurationError(Exception):
|
43 |
+
"""Custom exception for missing API configurations."""
|
44 |
pass
|
45 |
|
46 |
try:
|
|
|
48 |
BIOPORTAL_API_KEY = st.secrets["BIOPORTAL_API_KEY"]
|
49 |
PUB_EMAIL = st.secrets["PUB_EMAIL"]
|
50 |
OPENFDA_KEY = st.secrets["OPENFDA_KEY"]
|
51 |
+
|
52 |
if not all([OPENAI_API_KEY, BIOPORTAL_API_KEY, PUB_EMAIL, OPENFDA_KEY]):
|
53 |
raise APIConfigurationError("One or more required API credentials are missing.")
|
54 |
except (KeyError, APIConfigurationError) as e:
|
|
|
59 |
# CORE INFRASTRUCTURE
|
60 |
# -----------------------------
|
61 |
class PharmaResearchEngine:
|
62 |
+
"""Core engine for integrating diverse pharmaceutical datasets and performing advanced analyses."""
|
63 |
+
|
64 |
def __init__(self):
|
65 |
self.openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
66 |
+
|
67 |
@staticmethod
|
68 |
+
def api_request(endpoint: str,
|
69 |
+
params: Optional[Dict] = None,
|
70 |
+
headers: Optional[Dict] = None) -> Optional[Dict]:
|
71 |
+
"""
|
72 |
+
Enterprise-grade API request handler with detailed error logging.
|
73 |
+
"""
|
74 |
try:
|
75 |
+
response = requests.get(
|
76 |
+
endpoint,
|
77 |
+
params=params,
|
78 |
+
headers={**DEFAULT_HEADERS, **(headers or {})},
|
79 |
+
timeout=(3.05, 15)
|
80 |
+
)
|
81 |
+
response.raise_for_status() # Raises HTTPError for 4xx/5xx responses
|
82 |
return response.json()
|
83 |
except requests.exceptions.HTTPError as e:
|
84 |
logger.error(f"HTTP Error {e.response.status_code} for {endpoint} with params {params}")
|
|
|
90 |
|
91 |
def get_compound_profile(self, identifier: str) -> Optional[Dict]:
|
92 |
"""
|
93 |
+
Retrieve comprehensive chemical profile data from PubChem for a given compound.
|
94 |
+
Accepts both common compound names and SMILES strings.
|
95 |
"""
|
96 |
if not self._is_valid_compound_input(identifier):
|
97 |
+
msg = (f"The input '{identifier}' appears to reference a disease term rather than a chemical compound. "
|
98 |
+
"For disease-related inquiries, please use the Clinical Trial Analytics module.")
|
99 |
logger.warning(msg)
|
100 |
st.error(msg)
|
101 |
return None
|
102 |
+
|
103 |
pubchem_url = API_ENDPOINTS["pubchem"].format(identifier)
|
104 |
pubchem_data = self.api_request(pubchem_url)
|
105 |
if not pubchem_data or not pubchem_data.get("PC_Compounds"):
|
106 |
+
logger.warning(f"No compound data returned for identifier: {identifier}")
|
107 |
+
st.error("No compound data found. Please verify your input (e.g., check for typos or use a recognized compound name).")
|
|
|
108 |
return None
|
109 |
+
|
110 |
compound = pubchem_data["PC_Compounds"][0]
|
111 |
+
return {
|
112 |
'molecular_formula': self._extract_property(compound, 'Molecular Formula'),
|
113 |
'iupac_name': self._extract_property(compound, 'IUPAC Name'),
|
114 |
'canonical_smiles': self._extract_property(compound, 'Canonical SMILES'),
|
115 |
'molecular_weight': self._extract_property(compound, 'Molecular Weight'),
|
116 |
'logp': self._extract_property(compound, 'LogP')
|
117 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
def _extract_property(self, compound: Dict, prop_name: str) -> str:
|
120 |
+
"""Helper to extract a specific property from PubChem compound data."""
|
121 |
for prop in compound.get("props", []):
|
122 |
if prop.get("urn", {}).get("label") == prop_name:
|
123 |
return prop["value"].get("sval", "N/A")
|
|
|
126 |
@staticmethod
|
127 |
def _is_valid_compound_input(user_input: str) -> bool:
|
128 |
"""
|
129 |
+
Determines whether the user input is a valid chemical compound identifier.
|
130 |
+
Accepts both conventional compound names and SMILES strings.
|
131 |
+
Rejects inputs containing known disease terms.
|
132 |
"""
|
133 |
+
input_lower = user_input.lower().strip()
|
134 |
+
# Known disease terms that should not be processed as compounds
|
|
|
|
|
|
|
135 |
disease_terms = ['diabetes', 'cancer', 'hypertension', 'asthma']
|
136 |
+
if any(term in input_lower for term in disease_terms):
|
137 |
return False
|
138 |
+
|
139 |
+
# If the input contains characters common in SMILES (e.g., '=', '(', ')', '#'), treat as SMILES.
|
140 |
+
if re.search(r"[=\(\)#]", user_input):
|
141 |
+
return True
|
142 |
+
|
143 |
+
# Otherwise, if input is alphanumeric with spaces or hyphens, assume it's a valid compound name.
|
144 |
+
if re.match(r'^[A-Za-z0-9\s\-]+$', user_input):
|
145 |
+
return True
|
146 |
+
|
147 |
+
return False
|
148 |
|
149 |
# -----------------------------
|
150 |
# INTELLIGENCE MODULES
|
151 |
# -----------------------------
|
152 |
class ClinicalIntelligence:
|
153 |
+
"""
|
154 |
+
Module for clinical trial and regulatory intelligence.
|
155 |
+
Provides deep insights into trial landscapes and FDA approval data.
|
156 |
+
"""
|
157 |
+
|
158 |
def __init__(self):
|
159 |
self.engine = PharmaResearchEngine()
|
160 |
|
|
|
162 |
params = {"query.term": query, "retmax": 10} if not query.startswith("NCT") else {"id": query}
|
163 |
trials = self.engine.api_request(API_ENDPOINTS["clinical_trials"], params=params)
|
164 |
if trials is None:
|
165 |
+
logger.error(f"Clinical trial API returned no data for query: {query}")
|
166 |
+
st.error("Failed to retrieve clinical trials. Please try a different query or check your network connection.")
|
|
|
167 |
return []
|
168 |
return trials.get("studies", [])[:5]
|
169 |
|
|
|
171 |
if not OPENFDA_KEY:
|
172 |
st.error("OpenFDA API key not configured.")
|
173 |
return None
|
174 |
+
|
175 |
params = {
|
176 |
"api_key": OPENFDA_KEY,
|
177 |
"search": f'openfda.brand_name:"{drug_name}"',
|
|
|
180 |
data = self.engine.api_request(API_ENDPOINTS["fda_drug_approval"], params=params)
|
181 |
if data and data.get("results"):
|
182 |
return data["results"][0]
|
183 |
+
logger.warning(f"No FDA data found for drug: {drug_name}")
|
184 |
st.error("No FDA regulatory data found for the specified drug.")
|
185 |
return None
|
186 |
|
187 |
class AIDrugInnovator:
|
188 |
+
"""
|
189 |
+
GPT-4 powered module for generating advanced, cutting-edge drug development strategies.
|
190 |
+
"""
|
191 |
+
|
192 |
def __init__(self):
|
193 |
self.engine = PharmaResearchEngine()
|
194 |
+
|
195 |
def generate_strategy(self, target: str, strategy: str) -> str:
|
196 |
+
prompt = f"""As the Chief Scientific Officer at a leading pharmaceutical company, please develop a {strategy} strategy for the target: {target}.
|
197 |
|
198 |
**Target Validation Approach**
|
199 |
+
- Perform an exhaustive literature review to understand the molecular basis of the disease.
|
200 |
+
- Validate targets using in vitro and in vivo models.
|
201 |
+
- Integrate genomic and proteomic data to identify actionable targets.
|
202 |
+
- Collaborate with top-tier academic and clinical institutions.
|
|
|
203 |
|
204 |
**Lead Optimization Tactics**
|
205 |
+
- Conduct chemical optimization to improve potency, selectivity, and pharmacokinetic properties.
|
206 |
+
- Utilize high-throughput screening and biological assays for iterative lead refinement.
|
207 |
+
- Perform rigorous in vivo efficacy and safety evaluations.
|
208 |
+
- Secure intellectual property through comprehensive patent landscaping.
|
|
|
209 |
|
210 |
**Clinical Trial Design**
|
211 |
+
- Initiate Phase I trials focused on safety and dosage determination.
|
212 |
+
- Scale to Phase II for efficacy and side-effect profiling in a broader patient cohort.
|
213 |
+
- Execute large-scale Phase III trials to validate clinical benefits against current standards of care.
|
214 |
+
- Plan for Phase IV post-marketing surveillance for long-term outcome assessment.
|
215 |
+
- Incorporate adaptive trial designs to enhance responsiveness and efficiency.
|
|
|
216 |
|
217 |
**Regulatory Pathway Analysis**
|
218 |
+
- Engage in early pre-IND consultations with regulatory authorities.
|
219 |
+
- Prepare robust IND submissions incorporating comprehensive preclinical data.
|
220 |
+
- Maintain continuous dialogue with regulators throughout clinical development.
|
221 |
+
- Strategize for expedited review pathways (e.g., Fast Track, Breakthrough Therapy).
|
|
|
222 |
|
223 |
**Commercial Potential Assessment**
|
224 |
+
- Conduct detailed market research to understand the competitive landscape and unmet needs.
|
225 |
+
- Segment patient populations to tailor therapeutic approaches.
|
226 |
+
- Devise dynamic pricing and reimbursement strategies aligned with payer requirements.
|
227 |
+
- Formulate a comprehensive go-to-market plan leveraging multi-channel marketing strategies.
|
228 |
|
229 |
+
Please format your response in Markdown with clear section headers."""
|
230 |
try:
|
231 |
response = self.engine.openai_client.chat.completions.create(
|
232 |
model="gpt-4",
|
|
|
244 |
# STREAMLIT INTERFACE
|
245 |
# -----------------------------
|
246 |
class PharmaResearchInterface:
|
247 |
+
"""
|
248 |
+
Next-generation Streamlit interface for the Pharma Research Intelligence Suite.
|
249 |
+
Provides an integrated, intuitive dashboard for advanced pharmaceutical data analytics and AI-driven strategy generation.
|
250 |
+
"""
|
251 |
+
|
252 |
def __init__(self):
|
253 |
self.clinical_intel = ClinicalIntelligence()
|
254 |
self.ai_innovator = AIDrugInnovator()
|
|
|
262 |
)
|
263 |
st.markdown("""
|
264 |
<style>
|
265 |
+
.main {background-color: #f0f2f6;}
|
266 |
+
.stAlert {padding: 20px;}
|
267 |
+
.reportview-container .markdown-text-container {font-family: 'Helvetica Neue', Arial, sans-serif}
|
268 |
</style>
|
269 |
""", unsafe_allow_html=True)
|
270 |
|
271 |
def render(self):
|
272 |
st.title("Next-Generation Pharmaceutical Research Intelligence Suite")
|
273 |
self._render_navigation()
|
274 |
+
|
275 |
def _render_navigation(self):
|
276 |
tabs = st.tabs([
|
277 |
"🚀 Drug Innovation",
|
|
|
337 |
|
338 |
def _compound_profiler(self):
|
339 |
st.header("Advanced Multi-Omics Compound Profiler")
|
340 |
+
compound = st.text_input("Analyze Compound:", placeholder="Enter drug name or SMILES (e.g., Aspirin, CC(=O)OC1=CC=CC=C1C(=O)O)")
|
341 |
if st.button("Profile Compound"):
|
342 |
with st.spinner("Decoding molecular profile..."):
|
343 |
profile = PharmaResearchEngine().get_compound_profile(compound)
|
|
|
346 |
with col1:
|
347 |
st.subheader("Structural Insights")
|
348 |
smiles = profile.get('canonical_smiles', '')
|
349 |
+
mol = Chem.MolFromSmiles(smiles) if smiles != "N/A" else None
|
350 |
+
if mol:
|
351 |
+
img = Draw.MolToImage(mol, size=(400, 300))
|
352 |
+
st.image(img, caption="2D Molecular Structure")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
else:
|
354 |
+
st.error("Could not generate molecular structure image. Verify the SMILES string or compound name.")
|
355 |
with col2:
|
356 |
st.subheader("Physicochemical Profile")
|
357 |
+
st.metric("Molecular Weight", profile.get('molecular_weight', "N/A"))
|
358 |
+
st.metric("LogP", profile.get('logp', "N/A"))
|
359 |
+
st.metric("IUPAC Name", profile.get('iupac_name', "N/A"))
|
360 |
st.code(f"SMILES: {profile.get('canonical_smiles', 'N/A')}")
|
361 |
else:
|
362 |
+
st.warning("Compound profiling failed. Please ensure you have entered a valid chemical compound.")
|
363 |
|
364 |
def _regulatory_hub(self):
|
365 |
st.header("Regulatory Intelligence Hub")
|
|
|
377 |
def _ai_strategist(self):
|
378 |
st.header("AI Drug Development Strategist")
|
379 |
st.write("Leverage GPT-4 to generate cutting-edge drug development strategies.")
|
380 |
+
target = st.text_input("Enter Target Disease or Pathway:", placeholder="e.g., KRAS G12C mutation")
|
381 |
if st.button("Generate AI Strategy"):
|
382 |
with st.spinner("Generating AI-driven strategy..."):
|
383 |
strategy = self.ai_innovator.generate_strategy(target, "First-in-class")
|