mgbam commited on
Commit
92ff582
Β·
verified Β·
1 Parent(s): dcc4f4c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +304 -166
app.py CHANGED
@@ -1,205 +1,343 @@
1
-
2
-
3
  # -----------------------------
4
- # CORE IMPORTS & QUANTUM CONFIG
5
  # -----------------------------
6
  import streamlit as st
7
- import torch
8
- import numpy as np
9
  import pandas as pd
10
- import polars as pl
11
- import py3Dmol
 
 
 
12
  from rdkit import Chem
13
- from rdkit.Chem import AllChem, Draw
14
- from biopython import ProteinDesigner
15
- from quantum_ai import QuantumGNN, MolecularDynamicsSimulator
16
- from synthetic_bio import CRISPRDesignTool, DNAAssembler
17
- from digital_twin import PatientDigitalTwin
18
-
19
- # Quantum & HPC Imports
20
- from qiskit import QuantumCircuit, execute
21
- from qiskit_nature.drivers import Molecule
22
- from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem
23
- from dask.distributed import Client
24
- import cupy as cp
25
-
26
- # AI/ML Imports
27
- from transformers import BioGPT2, AlphaFoldWrapper
28
- from deepchem.models import TorchModel
29
- from fuse_ml import FederatedLearningOrchestrator
30
- from explainable_ai import ShapleyValueExplainer
31
 
32
  # -----------------------------
33
- # QUANTUM-ENHANCED ARCHITECTURE
34
  # -----------------------------
35
- class QuantumDrugEngine:
36
- def __init__(self):
37
- self.quantum_gnn = QuantumGNN()
38
- self.cryo_em_sim = MolecularDynamicsSimulator()
39
- self.dna_toolkit = DNAAssembler()
40
- self.federated_engine = FederatedLearningOrchestrator()
41
- self.digital_twin = PatientDigitalTwin()
42
-
43
- def design_protein(self, target: str):
44
- """Quantum-optimized protein folding with AlphaFold2 integration"""
45
- with st.spinner("Running quantum-enhanced protein folding..."):
46
- quantum_circuit = self._create_protein_folding_circuit(target)
47
- result = execute(quantum_circuit, backend='ibmq_quantum_computer').result()
48
- return ProteinDesigner().optimize_structure(result)
49
-
50
- def _create_protein_folding_circuit(self, sequence: str):
51
- """Generates quantum circuit for protein structure prediction"""
52
- qc = QuantumCircuit(128)
53
- # Quantum annealing-inspired protein folding logic
54
- for i, aa in enumerate(sequence):
55
- qc.rx(np.pi/len(sequence)*i, i)
56
- qc.rz(np.pi/len(sequence)*i, i)
57
- return qc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
  # -----------------------------
60
- # SYNERGISTIC AI MODELS
61
  # -----------------------------
62
- class NeuroSymbolicAI:
 
 
 
 
63
  def __init__(self):
64
- self.biogpt = BioGPT2.from_pretrained("microsoft/biogpt-xlarge")
65
- self.alphafold = AlphaFoldWrapper()
66
- self.tox_pred = TorchModel.load('quantum_tox21.h5')
 
 
 
 
 
 
 
 
 
 
 
67
 
68
- def generate_novel_scaffold(self, properties: dict):
69
- """Generates novel molecular scaffolds using quantum-inspired GANs"""
70
- latent_space = self._quantum_latent_sampling(properties)
71
- return self.quantum_gnn.generate_molecule(latent_space)
72
-
73
- def _quantum_latent_sampling(self, params: dict):
74
- """Creates quantum-enhanced latent space vectors"""
75
- qc = QuantumCircuit(16)
76
- for key, val in params.items():
77
- qc.rx(val*np.pi, int(key))
78
- return execute(qc, backend='ibmq_simulator').result().get_statevector()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
  # -----------------------------
81
- # FEDERATED MULTI-OMICS ENGINE
82
  # -----------------------------
83
- class FederatedOmicsAnalyzer:
 
 
 
84
  def __init__(self):
85
- self.client = Client(n_workers=8)
86
- self.genome_db = "gs://global-genome-database"
87
-
88
- def analyze_crispr_design(self, guide_rna: str):
89
- """Distributed CRISPR efficiency analysis"""
90
- return self.client.submit(self._run_crispr_simulation, guide_rna)
91
-
92
- def _run_crispr_simulation(self, guide: str):
93
- """Quantum-ML hybrid CRISPR analysis"""
94
- with cp.cuda.Device(0):
95
- return CRISPRDesignTool().predict_efficiency(guide)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
  # -----------------------------
98
- # STREAMLIT QUANTUM INTERFACE
99
  # -----------------------------
100
- class QuantumPharmX:
 
 
 
101
  def __init__(self):
102
- self.engine = QuantumDrugEngine()
103
- self._configure_quantum_interface()
104
-
105
- def _configure_quantum_interface(self):
 
 
106
  st.set_page_config(
107
- page_title="QuantumPharm X",
108
  layout="wide",
109
- page_icon="🧬",
110
  initial_sidebar_state="expanded"
111
  )
112
  st.markdown("""
113
- <style>
114
- .main {background: linear-gradient(45deg, #0f0c29, #302b63, #24243e);}
115
- .st-bb {background-color: rgba(255,255,255,0.1);}
116
- .st-at {background-color: #4a148c;}
117
- .stAlert {backdrop-filter: blur(10px);}
118
- </style>
119
  """, unsafe_allow_html=True)
120
 
121
  def render(self):
122
- st.title("🧬 QuantumPharm X - Post-Moore Drug Discovery")
123
- self._build_quantum_dashboard()
124
 
125
- def _build_quantum_dashboard(self):
126
  tabs = st.tabs([
127
- "🌌 Quantum Protein Design",
128
- "🧫 Synthetic Biology Lab",
129
- "πŸ«€ Digital Twin Clinic",
130
- "βš›οΈ Quantum Chemistry",
131
- "πŸ”¬ Federated Research"
132
  ])
133
-
134
- with tabs[0]: self._quantum_protein_design()
135
- with tabs[1]: self._synthetic_biology_interface()
136
- with tabs[2]: self._digital_twin_clinic()
137
- with tabs[3]: self._quantum_chemistry_workbench()
138
- with tabs[4]: self._federated_research_portal()
139
-
140
- def _quantum_protein_design(self):
141
- st.header("Quantum Protein Engineering Workflow")
142
- col1, col2 = st.columns([1, 2])
 
 
 
 
143
  with col1:
144
- target_seq = st.text_area("Input Target Sequence:", "MAGFIRVLSK")
145
- design_params = {
146
- "thermostability": st.slider("Thermostability", 0.0, 1.0, 0.7),
147
- "immunogenicity": st.slider("Immunogenicity Risk", 0.0, 1.0, 0.3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
  }
149
- with col2:
150
- if st.button("Run Quantum Design"):
151
- protein = self.engine.design_protein(target_seq)
152
- self._display_4d_protein(protein)
153
-
154
- def _synthetic_biology_interface(self):
155
- st.header("CRISPR Quantum Design Studio")
156
- guide_rna = st.text_input("Guide RNA Sequence:", "GACCGGAACGAAAACCTTG")
157
- if st.button("Analyze CRISPR Efficiency"):
158
- efficiency = self.engine.federated_engine.analyze_crispr_design(guide_rna)
159
- st.write(f"Quantum Efficiency Score: {efficiency.result():.2f}%")
160
-
161
- def _digital_twin_clinic(self):
162
- st.header("Patient Digital Twin Simulation")
163
- upload = st.file_uploader("Upload Multi-Omics Data:")
164
- if upload:
165
- twin = self.engine.digital_twin.create(upload)
166
- st.plotly_chart(twin.visualize_physiology())
167
-
168
- def _quantum_chemistry_workbench(self):
169
- st.header("Quantum Molecular Dynamics Lab")
170
- mol_input = st.text_input("Molecule Input:", "CN1C=NC2=C1N=CN=C2N")
171
- if st.button("Run Quantum Simulation"):
172
- with st.spinner("Executing on Quantum Computer..."):
173
- result = self.engine.cryo_em_sim.run(mol_input)
174
- self._display_quantum_orbital(result)
175
-
176
- def _federated_research_portal(self):
177
- st.header("Global Federated Research Network")
178
- model_id = st.text_input("Enter Collaborative Model ID:")
179
- if st.button("Join Federated Learning"):
180
- self.engine.federated_engine.connect(model_id)
181
- st.success("Connected to Global Research Collective")
182
-
183
- def _display_4d_protein(self, protein):
184
- viewer = py3Dmol.view(width=800, height=600)
185
- viewer.addModel(protein.pdb_str, 'pdb')
186
- viewer.setStyle({'cartoon': {'color': 'spectrum'}})
187
- viewer.animate({'loop': 'backAndForth'})
188
- st.write(viewer.show())
189
-
190
- def _display_quantum_orbital(self, data):
191
- fig = px.scatter_3d(
192
- data,
193
- x='x', y='y', z='z',
194
- color='electron_density',
195
- size='probability',
196
- animation_frame='time_step'
197
- )
198
- st.plotly_chart(fig, use_container_width=True)
199
 
200
  # -----------------------------
201
  # MAIN EXECUTION
202
  # -----------------------------
203
  if __name__ == "__main__":
204
- qpx = QuantumPharmX()
205
- qpx.render()
 
 
 
1
  # -----------------------------
2
+ # IMPORTS & CONFIGURATION
3
  # -----------------------------
4
  import streamlit as st
 
 
5
  import pandas as pd
6
+ import matplotlib.pyplot as plt
7
+ import seaborn as sns
8
+ import logging
9
+ import re
10
+ import time
11
  from rdkit import Chem
12
+ from rdkit.Chem import Draw
13
+
14
+ # Configure logging for detailed diagnostics
15
+ logging.basicConfig(
16
+ level=logging.INFO,
17
+ format='%(asctime)s - %(levelname)s - %(message)s',
18
+ handlers=[logging.FileHandler("pris_debug.log"), logging.StreamHandler()]
19
+ )
20
+ logger = logging.getLogger("PRIS")
 
 
 
 
 
 
 
 
 
21
 
22
  # -----------------------------
23
+ # FALLBACK / SCRAPED DATA
24
  # -----------------------------
25
+ # Fallback data for compound profiling (simulated scraped or cached data)
26
+ FALLBACK_COMPOUND_DATA = {
27
+ "aspirin": {
28
+ "molecular_formula": "C9H8O4",
29
+ "iupac_name": "2-acetoxybenzoic acid",
30
+ "canonical_smiles": "CC(=O)OC1=CC=CC=C1C(=O)O", # Valid SMILES for Aspirin
31
+ "molecular_weight": "180.16",
32
+ "logp": "N/A"
33
+ },
34
+ "ibuprofen": {
35
+ "molecular_formula": "C13H18O2",
36
+ "iupac_name": "2-(4-isobutylphenyl)propanoic acid",
37
+ "canonical_smiles": "CC(C)Cc1ccc(cc1)C(C)C(=O)O",
38
+ "molecular_weight": "206.28",
39
+ "logp": "3.97"
40
+ }
41
+ }
42
+
43
+ # Fallback clinical trial data (simulated scraped data)
44
+ FALLBACK_CLINICAL_DATA = {
45
+ "nct1": [
46
+ {
47
+ "protocolSection": {
48
+ "identificationModule": {"briefTitle": "A Study of Novel Therapeutics in Diabetes"},
49
+ "statusModule": {"overallStatus": "Completed"},
50
+ "designModule": {"phases": ["Phase II"], "enrollmentInfo": {"count": "120"}}
51
+ }
52
+ },
53
+ {
54
+ "protocolSection": {
55
+ "identificationModule": {"briefTitle": "Evaluation of Biomarkers in Diabetic Patients"},
56
+ "statusModule": {"overallStatus": "Recruiting"},
57
+ "designModule": {"phases": ["Phase I"], "enrollmentInfo": {"count": "60"}}
58
+ }
59
+ }
60
+ ],
61
+ "cancer": [
62
+ {
63
+ "protocolSection": {
64
+ "identificationModule": {"briefTitle": "Immunotherapy Trials in Advanced Cancer"},
65
+ "statusModule": {"overallStatus": "Active, not recruiting"},
66
+ "designModule": {"phases": ["Phase III"], "enrollmentInfo": {"count": "250"}}
67
+ }
68
+ }
69
+ ]
70
+ }
71
 
72
  # -----------------------------
73
+ # CORE INFRASTRUCTURE
74
  # -----------------------------
75
+ class PharmaResearchEngine:
76
+ """
77
+ Core engine using local fallback data.
78
+ This engine simulates data retrieval without any external API calls.
79
+ """
80
  def __init__(self):
81
+ # In a live system, API clients would be initialized here.
82
+ pass
83
+
84
+ def get_compound_profile(self, identifier: str) -> dict:
85
+ """
86
+ Retrieve a comprehensive compound profile.
87
+ Checks input validity and returns fallback data if available.
88
+ """
89
+ if not self._is_valid_compound_input(identifier):
90
+ msg = (f"The input '{identifier}' appears to reference a disease term rather than a chemical compound. "
91
+ "For disease-related inquiries, please use the Clinical Trial Analytics module.")
92
+ logger.warning(msg)
93
+ st.error(msg)
94
+ return {}
95
 
96
+ key = identifier.lower().strip()
97
+ if key in FALLBACK_COMPOUND_DATA:
98
+ logger.info(f"Using fallback data for compound '{identifier}'.")
99
+ return FALLBACK_COMPOUND_DATA[key]
100
+ else:
101
+ msg = f"No compound data found for '{identifier}'. Please verify the compound name or SMILES."
102
+ logger.error(msg)
103
+ st.error(msg)
104
+ return {}
105
+
106
+ def _is_valid_compound_input(self, user_input: str) -> bool:
107
+ """
108
+ Determines if the user input is a valid compound identifier.
109
+ Rejects inputs containing known disease terms.
110
+ """
111
+ input_lower = user_input.lower().strip()
112
+ disease_terms = ['diabetes', 'cancer', 'hypertension', 'asthma']
113
+ if any(term in input_lower for term in disease_terms):
114
+ return False
115
+ # Accept input with SMILES-specific characters (e.g., '=', '(', ')', '#')
116
+ if re.search(r"[=\(\)#]", user_input):
117
+ return True
118
+ # Otherwise, accept if input is alphanumeric with spaces/hyphens
119
+ if re.match(r'^[A-Za-z0-9\s\-]+$', user_input):
120
+ return True
121
+ return False
122
 
123
  # -----------------------------
124
+ # INTELLIGENCE MODULES
125
  # -----------------------------
126
+ class ClinicalIntelligence:
127
+ """
128
+ Module for clinical trial analytics using fallback data.
129
+ """
130
  def __init__(self):
131
+ self.engine = PharmaResearchEngine()
132
+
133
+ def get_trial_landscape(self, query: str) -> list:
134
+ """
135
+ Retrieve clinical trial data based on the query.
136
+ Returns fallback data if available.
137
+ """
138
+ key = query.lower().strip()
139
+ if key in FALLBACK_CLINICAL_DATA:
140
+ logger.info(f"Using fallback clinical data for query '{query}'.")
141
+ return FALLBACK_CLINICAL_DATA[key]
142
+ else:
143
+ msg = f"No clinical trial data available for '{query}'."
144
+ logger.error(msg)
145
+ st.error("Failed to retrieve clinical trials. Please try a different query.")
146
+ return []
147
+
148
+ class AIDrugInnovator:
149
+ """
150
+ Simulated AI module that returns a pre-defined drug development strategy.
151
+ """
152
+ def __init__(self):
153
+ # No external AI API is used in offline mode.
154
+ pass
155
+
156
+ def generate_strategy(self, target: str, strategy: str) -> str:
157
+ """
158
+ Returns a comprehensive, simulated strategy for drug development.
159
+ """
160
+ simulated_response = f"""
161
+ # First-in-Class Strategy for {target.title()}
162
+
163
+ ## Target Validation Approach
164
+ - **Literature Review:** Perform an exhaustive review of current literature to understand the molecular mechanisms of {target}.
165
+ - **Preclinical Studies:** Validate targets using state-of-the-art in vitro and in vivo models.
166
+ - **Omics Integration:** Analyze genomic and proteomic data to identify actionable targets.
167
+ - **Collaborative Research:** Partner with leading academic and clinical institutions.
168
+
169
+ ## Lead Optimization Tactics
170
+ - **Chemical Optimization:** Enhance lead compounds to improve potency, selectivity, and pharmacokinetics.
171
+ - **High-Throughput Screening:** Utilize modern screening techniques for iterative lead refinement.
172
+ - **In Vivo Efficacy:** Conduct thorough animal studies to assess safety and efficacy.
173
+ - **Intellectual Property:** Secure robust patents through comprehensive patent landscaping.
174
+
175
+ ## Clinical Trial Design
176
+ - **Phase I:** Safety and dosage studies.
177
+ - **Phase II:** Efficacy and side-effect profiling.
178
+ - **Phase III:** Large-scale trials comparing with current standards.
179
+ - **Phase IV:** Post-marketing surveillance.
180
+ - **Adaptive Designs:** Incorporate adaptive trial designs for efficiency.
181
+
182
+ ## Regulatory Pathway Analysis
183
+ - **Pre-IND Consultation:** Initiate early dialogue with regulatory authorities.
184
+ - **IND Submission:** Prepare robust submissions with complete preclinical data.
185
+ - **Continuous Engagement:** Maintain ongoing communication with regulators.
186
+ - **Expedited Programs:** Explore Fast Track and Breakthrough Therapy designations.
187
+
188
+ ## Commercial Potential Assessment
189
+ - **Market Research:** Analyze market trends and unmet needs.
190
+ - **Patient Segmentation:** Identify target patient demographics.
191
+ - **Pricing & Reimbursement:** Develop strategic pricing and reimbursement plans.
192
+ - **Go-To-Market Strategy:** Formulate a comprehensive marketing and sales plan.
193
+ """
194
+ return simulated_response
195
 
196
  # -----------------------------
197
+ # STREAMLIT INTERFACE
198
  # -----------------------------
199
+ class PharmaResearchInterface:
200
+ """
201
+ Streamlit interface for the Pharma Research Intelligence Suite using fallback data.
202
+ """
203
  def __init__(self):
204
+ self.engine = PharmaResearchEngine()
205
+ self.clinical_intel = ClinicalIntelligence()
206
+ self.ai_innovator = AIDrugInnovator()
207
+ self._configure_page()
208
+
209
+ def _configure_page(self):
210
  st.set_page_config(
211
+ page_title="PRIS - Next-Generation Pharmaceutical Research Suite",
212
  layout="wide",
 
213
  initial_sidebar_state="expanded"
214
  )
215
  st.markdown("""
216
+ <style>
217
+ .main {background-color: #f0f2f6; padding: 20px;}
218
+ .stAlert {padding: 20px; font-size: 1.1em;}
219
+ .reportview-container .markdown-text-container {font-family: 'Helvetica Neue', Arial, sans-serif;}
220
+ </style>
 
221
  """, unsafe_allow_html=True)
222
 
223
  def render(self):
224
+ st.title("Next-Generation Pharmaceutical Research Intelligence Suite")
225
+ self._render_navigation()
226
 
227
+ def _render_navigation(self):
228
  tabs = st.tabs([
229
+ "πŸš€ Drug Innovation",
230
+ "πŸ“ˆ Trial Analytics",
231
+ "πŸ§ͺ Compound Profiler",
232
+ "πŸ“œ Regulatory Hub",
233
+ "πŸ€– AI Strategist"
234
  ])
235
+ with tabs[0]:
236
+ self._drug_innovation()
237
+ with tabs[1]:
238
+ self._trial_analytics()
239
+ with tabs[2]:
240
+ self._compound_profiler()
241
+ with tabs[3]:
242
+ self._regulatory_hub()
243
+ with tabs[4]:
244
+ self._ai_strategist()
245
+
246
+ def _drug_innovation(self):
247
+ st.header("AI-Powered Drug Innovation Engine")
248
+ col1, col2 = st.columns([1, 3])
249
  with col1:
250
+ target = st.text_input("Target Pathobiology:", placeholder="e.g., EGFR mutant NSCLC")
251
+ paradigm = st.selectbox("Development Paradigm:", ["First-in-class", "Fast-follower", "Biologic", "ADC", "Gene Therapy"])
252
+ if st.button("Generate Development Blueprint"):
253
+ with st.spinner("Formulating strategic plan..."):
254
+ blueprint = self.ai_innovator.generate_strategy(target, paradigm)
255
+ st.markdown(blueprint, unsafe_allow_html=True)
256
+
257
+ def _trial_analytics(self):
258
+ st.header("Clinical Trial Landscape Analysis")
259
+ query = st.text_input("Search Clinical Trials:", placeholder="Enter condition, intervention, or NCT number")
260
+ if st.button("Analyze Trial Landscape"):
261
+ with st.spinner("Fetching trial data..."):
262
+ trials = self.clinical_intel.get_trial_landscape(query)
263
+ if trials:
264
+ st.subheader("Top Clinical Trials")
265
+ trial_data = []
266
+ for study in trials:
267
+ title = study.get("protocolSection", {}).get("identificationModule", {}).get("briefTitle", "N/A")
268
+ status = study.get("protocolSection", {}).get("statusModule", {}).get("overallStatus", "N/A")
269
+ phase = study.get("protocolSection", {}).get("designModule", {}).get("phases", ["N/A"])[0]
270
+ enrollment = study.get("protocolSection", {}).get("designModule", {}).get("enrollmentInfo", {}).get("count", "N/A")
271
+ trial_data.append({
272
+ "Title": title,
273
+ "Status": status,
274
+ "Phase": phase,
275
+ "Enrollment": enrollment
276
+ })
277
+ df = pd.DataFrame(trial_data)
278
+ st.dataframe(df)
279
+ st.subheader("Trial Phase Distribution")
280
+ phase_counts = df["Phase"].value_counts()
281
+ fig, ax = plt.subplots()
282
+ sns.barplot(x=phase_counts.index, y=phase_counts.values, ax=ax)
283
+ ax.set_xlabel("Trial Phase")
284
+ ax.set_ylabel("Number of Trials")
285
+ st.pyplot(fig)
286
+ else:
287
+ st.warning("No clinical trials found for the provided query.")
288
+
289
+ def _compound_profiler(self):
290
+ st.header("Advanced Multi-Omics Compound Profiler")
291
+ compound = st.text_input("Analyze Compound:", placeholder="Enter drug name or SMILES (e.g., Aspirin)")
292
+ if st.button("Profile Compound"):
293
+ with st.spinner("Decoding molecular profile..."):
294
+ profile = self.engine.get_compound_profile(compound)
295
+ if profile:
296
+ col1, col2 = st.columns(2)
297
+ with col1:
298
+ st.subheader("Structural Insights")
299
+ smiles = profile.get('canonical_smiles', '')
300
+ mol = Chem.MolFromSmiles(smiles) if smiles and smiles != "N/A" else None
301
+ if mol:
302
+ img = Draw.MolToImage(mol, size=(400, 300))
303
+ st.image(img, caption="2D Molecular Structure")
304
+ else:
305
+ st.error("Could not generate molecular structure image. Verify the SMILES string or compound name.")
306
+ with col2:
307
+ st.subheader("Physicochemical Profile")
308
+ st.metric("Molecular Weight", profile.get('molecular_weight', "N/A"))
309
+ st.metric("LogP", profile.get('logp', "N/A"))
310
+ st.metric("IUPAC Name", profile.get('iupac_name', "N/A"))
311
+ st.code(f"SMILES: {profile.get('canonical_smiles', 'N/A')}")
312
+ else:
313
+ st.warning("Compound profiling failed. Please ensure you have entered a valid chemical compound.")
314
+
315
+ def _regulatory_hub(self):
316
+ st.header("Regulatory Intelligence Hub")
317
+ st.write("Gain insights into FDA approvals and regulatory pathways using local sample data.")
318
+ drug_name = st.text_input("Enter Drug Name for Regulatory Analysis:", placeholder="e.g., Aspirin")
319
+ if st.button("Fetch Regulatory Data"):
320
+ sample_regulatory_data = {
321
+ "drug_name": drug_name,
322
+ "approval_status": "Approved",
323
+ "approval_date": "1985-07-01",
324
+ "label": "Sample regulatory label information."
325
  }
326
+ st.subheader("FDA Approval Details")
327
+ st.json(sample_regulatory_data)
328
+
329
+ def _ai_strategist(self):
330
+ st.header("AI Drug Development Strategist")
331
+ st.write("Leverage our simulated GPT-4 engine to generate cutting-edge drug development strategies.")
332
+ target = st.text_input("Enter Target Disease or Pathway:", placeholder="e.g., KRAS G12C mutation")
333
+ if st.button("Generate AI Strategy"):
334
+ with st.spinner("Generating AI-driven strategy..."):
335
+ strategy = self.ai_innovator.generate_strategy(target, "First-in-class")
336
+ st.markdown(strategy, unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337
 
338
  # -----------------------------
339
  # MAIN EXECUTION
340
  # -----------------------------
341
  if __name__ == "__main__":
342
+ interface = PharmaResearchInterface()
343
+ interface.render()