Update app.py
Browse files
app.py
CHANGED
@@ -1,205 +1,343 @@
|
|
1 |
-
|
2 |
-
|
3 |
# -----------------------------
|
4 |
-
#
|
5 |
# -----------------------------
|
6 |
import streamlit as st
|
7 |
-
import torch
|
8 |
-
import numpy as np
|
9 |
import pandas as pd
|
10 |
-
import
|
11 |
-
import
|
|
|
|
|
|
|
12 |
from rdkit import Chem
|
13 |
-
from rdkit.Chem import
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem
|
23 |
-
from dask.distributed import Client
|
24 |
-
import cupy as cp
|
25 |
-
|
26 |
-
# AI/ML Imports
|
27 |
-
from transformers import BioGPT2, AlphaFoldWrapper
|
28 |
-
from deepchem.models import TorchModel
|
29 |
-
from fuse_ml import FederatedLearningOrchestrator
|
30 |
-
from explainable_ai import ShapleyValueExplainer
|
31 |
|
32 |
# -----------------------------
|
33 |
-
#
|
34 |
# -----------------------------
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# -----------------------------
|
60 |
-
#
|
61 |
# -----------------------------
|
62 |
-
class
|
|
|
|
|
|
|
|
|
63 |
def __init__(self):
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# -----------------------------
|
81 |
-
#
|
82 |
# -----------------------------
|
83 |
-
class
|
|
|
|
|
|
|
84 |
def __init__(self):
|
85 |
-
self.
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# -----------------------------
|
98 |
-
# STREAMLIT
|
99 |
# -----------------------------
|
100 |
-
class
|
|
|
|
|
|
|
101 |
def __init__(self):
|
102 |
-
self.engine =
|
103 |
-
self.
|
104 |
-
|
105 |
-
|
|
|
|
|
106 |
st.set_page_config(
|
107 |
-
page_title="
|
108 |
layout="wide",
|
109 |
-
page_icon="π§¬",
|
110 |
initial_sidebar_state="expanded"
|
111 |
)
|
112 |
st.markdown("""
|
113 |
-
|
114 |
-
.main {background:
|
115 |
-
.
|
116 |
-
.
|
117 |
-
|
118 |
-
</style>
|
119 |
""", unsafe_allow_html=True)
|
120 |
|
121 |
def render(self):
|
122 |
-
st.title("
|
123 |
-
self.
|
124 |
|
125 |
-
def
|
126 |
tabs = st.tabs([
|
127 |
-
"
|
128 |
-
"
|
129 |
-
"
|
130 |
-
"
|
131 |
-
"
|
132 |
])
|
133 |
-
|
134 |
-
|
135 |
-
with tabs[1]:
|
136 |
-
|
137 |
-
with tabs[
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
143 |
with col1:
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
}
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
st.
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
def _digital_twin_clinic(self):
|
162 |
-
st.header("Patient Digital Twin Simulation")
|
163 |
-
upload = st.file_uploader("Upload Multi-Omics Data:")
|
164 |
-
if upload:
|
165 |
-
twin = self.engine.digital_twin.create(upload)
|
166 |
-
st.plotly_chart(twin.visualize_physiology())
|
167 |
-
|
168 |
-
def _quantum_chemistry_workbench(self):
|
169 |
-
st.header("Quantum Molecular Dynamics Lab")
|
170 |
-
mol_input = st.text_input("Molecule Input:", "CN1C=NC2=C1N=CN=C2N")
|
171 |
-
if st.button("Run Quantum Simulation"):
|
172 |
-
with st.spinner("Executing on Quantum Computer..."):
|
173 |
-
result = self.engine.cryo_em_sim.run(mol_input)
|
174 |
-
self._display_quantum_orbital(result)
|
175 |
-
|
176 |
-
def _federated_research_portal(self):
|
177 |
-
st.header("Global Federated Research Network")
|
178 |
-
model_id = st.text_input("Enter Collaborative Model ID:")
|
179 |
-
if st.button("Join Federated Learning"):
|
180 |
-
self.engine.federated_engine.connect(model_id)
|
181 |
-
st.success("Connected to Global Research Collective")
|
182 |
-
|
183 |
-
def _display_4d_protein(self, protein):
|
184 |
-
viewer = py3Dmol.view(width=800, height=600)
|
185 |
-
viewer.addModel(protein.pdb_str, 'pdb')
|
186 |
-
viewer.setStyle({'cartoon': {'color': 'spectrum'}})
|
187 |
-
viewer.animate({'loop': 'backAndForth'})
|
188 |
-
st.write(viewer.show())
|
189 |
-
|
190 |
-
def _display_quantum_orbital(self, data):
|
191 |
-
fig = px.scatter_3d(
|
192 |
-
data,
|
193 |
-
x='x', y='y', z='z',
|
194 |
-
color='electron_density',
|
195 |
-
size='probability',
|
196 |
-
animation_frame='time_step'
|
197 |
-
)
|
198 |
-
st.plotly_chart(fig, use_container_width=True)
|
199 |
|
200 |
# -----------------------------
|
201 |
# MAIN EXECUTION
|
202 |
# -----------------------------
|
203 |
if __name__ == "__main__":
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
1 |
# -----------------------------
|
2 |
+
# IMPORTS & CONFIGURATION
|
3 |
# -----------------------------
|
4 |
import streamlit as st
|
|
|
|
|
5 |
import pandas as pd
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
import logging
|
9 |
+
import re
|
10 |
+
import time
|
11 |
from rdkit import Chem
|
12 |
+
from rdkit.Chem import Draw
|
13 |
+
|
14 |
+
# Configure logging for detailed diagnostics
|
15 |
+
logging.basicConfig(
|
16 |
+
level=logging.INFO,
|
17 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
18 |
+
handlers=[logging.FileHandler("pris_debug.log"), logging.StreamHandler()]
|
19 |
+
)
|
20 |
+
logger = logging.getLogger("PRIS")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# -----------------------------
|
23 |
+
# FALLBACK / SCRAPED DATA
|
24 |
# -----------------------------
|
25 |
+
# Fallback data for compound profiling (simulated scraped or cached data)
|
26 |
+
FALLBACK_COMPOUND_DATA = {
|
27 |
+
"aspirin": {
|
28 |
+
"molecular_formula": "C9H8O4",
|
29 |
+
"iupac_name": "2-acetoxybenzoic acid",
|
30 |
+
"canonical_smiles": "CC(=O)OC1=CC=CC=C1C(=O)O", # Valid SMILES for Aspirin
|
31 |
+
"molecular_weight": "180.16",
|
32 |
+
"logp": "N/A"
|
33 |
+
},
|
34 |
+
"ibuprofen": {
|
35 |
+
"molecular_formula": "C13H18O2",
|
36 |
+
"iupac_name": "2-(4-isobutylphenyl)propanoic acid",
|
37 |
+
"canonical_smiles": "CC(C)Cc1ccc(cc1)C(C)C(=O)O",
|
38 |
+
"molecular_weight": "206.28",
|
39 |
+
"logp": "3.97"
|
40 |
+
}
|
41 |
+
}
|
42 |
+
|
43 |
+
# Fallback clinical trial data (simulated scraped data)
|
44 |
+
FALLBACK_CLINICAL_DATA = {
|
45 |
+
"nct1": [
|
46 |
+
{
|
47 |
+
"protocolSection": {
|
48 |
+
"identificationModule": {"briefTitle": "A Study of Novel Therapeutics in Diabetes"},
|
49 |
+
"statusModule": {"overallStatus": "Completed"},
|
50 |
+
"designModule": {"phases": ["Phase II"], "enrollmentInfo": {"count": "120"}}
|
51 |
+
}
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"protocolSection": {
|
55 |
+
"identificationModule": {"briefTitle": "Evaluation of Biomarkers in Diabetic Patients"},
|
56 |
+
"statusModule": {"overallStatus": "Recruiting"},
|
57 |
+
"designModule": {"phases": ["Phase I"], "enrollmentInfo": {"count": "60"}}
|
58 |
+
}
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"cancer": [
|
62 |
+
{
|
63 |
+
"protocolSection": {
|
64 |
+
"identificationModule": {"briefTitle": "Immunotherapy Trials in Advanced Cancer"},
|
65 |
+
"statusModule": {"overallStatus": "Active, not recruiting"},
|
66 |
+
"designModule": {"phases": ["Phase III"], "enrollmentInfo": {"count": "250"}}
|
67 |
+
}
|
68 |
+
}
|
69 |
+
]
|
70 |
+
}
|
71 |
|
72 |
# -----------------------------
|
73 |
+
# CORE INFRASTRUCTURE
|
74 |
# -----------------------------
|
75 |
+
class PharmaResearchEngine:
|
76 |
+
"""
|
77 |
+
Core engine using local fallback data.
|
78 |
+
This engine simulates data retrieval without any external API calls.
|
79 |
+
"""
|
80 |
def __init__(self):
|
81 |
+
# In a live system, API clients would be initialized here.
|
82 |
+
pass
|
83 |
+
|
84 |
+
def get_compound_profile(self, identifier: str) -> dict:
|
85 |
+
"""
|
86 |
+
Retrieve a comprehensive compound profile.
|
87 |
+
Checks input validity and returns fallback data if available.
|
88 |
+
"""
|
89 |
+
if not self._is_valid_compound_input(identifier):
|
90 |
+
msg = (f"The input '{identifier}' appears to reference a disease term rather than a chemical compound. "
|
91 |
+
"For disease-related inquiries, please use the Clinical Trial Analytics module.")
|
92 |
+
logger.warning(msg)
|
93 |
+
st.error(msg)
|
94 |
+
return {}
|
95 |
|
96 |
+
key = identifier.lower().strip()
|
97 |
+
if key in FALLBACK_COMPOUND_DATA:
|
98 |
+
logger.info(f"Using fallback data for compound '{identifier}'.")
|
99 |
+
return FALLBACK_COMPOUND_DATA[key]
|
100 |
+
else:
|
101 |
+
msg = f"No compound data found for '{identifier}'. Please verify the compound name or SMILES."
|
102 |
+
logger.error(msg)
|
103 |
+
st.error(msg)
|
104 |
+
return {}
|
105 |
+
|
106 |
+
def _is_valid_compound_input(self, user_input: str) -> bool:
|
107 |
+
"""
|
108 |
+
Determines if the user input is a valid compound identifier.
|
109 |
+
Rejects inputs containing known disease terms.
|
110 |
+
"""
|
111 |
+
input_lower = user_input.lower().strip()
|
112 |
+
disease_terms = ['diabetes', 'cancer', 'hypertension', 'asthma']
|
113 |
+
if any(term in input_lower for term in disease_terms):
|
114 |
+
return False
|
115 |
+
# Accept input with SMILES-specific characters (e.g., '=', '(', ')', '#')
|
116 |
+
if re.search(r"[=\(\)#]", user_input):
|
117 |
+
return True
|
118 |
+
# Otherwise, accept if input is alphanumeric with spaces/hyphens
|
119 |
+
if re.match(r'^[A-Za-z0-9\s\-]+$', user_input):
|
120 |
+
return True
|
121 |
+
return False
|
122 |
|
123 |
# -----------------------------
|
124 |
+
# INTELLIGENCE MODULES
|
125 |
# -----------------------------
|
126 |
+
class ClinicalIntelligence:
|
127 |
+
"""
|
128 |
+
Module for clinical trial analytics using fallback data.
|
129 |
+
"""
|
130 |
def __init__(self):
|
131 |
+
self.engine = PharmaResearchEngine()
|
132 |
+
|
133 |
+
def get_trial_landscape(self, query: str) -> list:
|
134 |
+
"""
|
135 |
+
Retrieve clinical trial data based on the query.
|
136 |
+
Returns fallback data if available.
|
137 |
+
"""
|
138 |
+
key = query.lower().strip()
|
139 |
+
if key in FALLBACK_CLINICAL_DATA:
|
140 |
+
logger.info(f"Using fallback clinical data for query '{query}'.")
|
141 |
+
return FALLBACK_CLINICAL_DATA[key]
|
142 |
+
else:
|
143 |
+
msg = f"No clinical trial data available for '{query}'."
|
144 |
+
logger.error(msg)
|
145 |
+
st.error("Failed to retrieve clinical trials. Please try a different query.")
|
146 |
+
return []
|
147 |
+
|
148 |
+
class AIDrugInnovator:
|
149 |
+
"""
|
150 |
+
Simulated AI module that returns a pre-defined drug development strategy.
|
151 |
+
"""
|
152 |
+
def __init__(self):
|
153 |
+
# No external AI API is used in offline mode.
|
154 |
+
pass
|
155 |
+
|
156 |
+
def generate_strategy(self, target: str, strategy: str) -> str:
|
157 |
+
"""
|
158 |
+
Returns a comprehensive, simulated strategy for drug development.
|
159 |
+
"""
|
160 |
+
simulated_response = f"""
|
161 |
+
# First-in-Class Strategy for {target.title()}
|
162 |
+
|
163 |
+
## Target Validation Approach
|
164 |
+
- **Literature Review:** Perform an exhaustive review of current literature to understand the molecular mechanisms of {target}.
|
165 |
+
- **Preclinical Studies:** Validate targets using state-of-the-art in vitro and in vivo models.
|
166 |
+
- **Omics Integration:** Analyze genomic and proteomic data to identify actionable targets.
|
167 |
+
- **Collaborative Research:** Partner with leading academic and clinical institutions.
|
168 |
+
|
169 |
+
## Lead Optimization Tactics
|
170 |
+
- **Chemical Optimization:** Enhance lead compounds to improve potency, selectivity, and pharmacokinetics.
|
171 |
+
- **High-Throughput Screening:** Utilize modern screening techniques for iterative lead refinement.
|
172 |
+
- **In Vivo Efficacy:** Conduct thorough animal studies to assess safety and efficacy.
|
173 |
+
- **Intellectual Property:** Secure robust patents through comprehensive patent landscaping.
|
174 |
+
|
175 |
+
## Clinical Trial Design
|
176 |
+
- **Phase I:** Safety and dosage studies.
|
177 |
+
- **Phase II:** Efficacy and side-effect profiling.
|
178 |
+
- **Phase III:** Large-scale trials comparing with current standards.
|
179 |
+
- **Phase IV:** Post-marketing surveillance.
|
180 |
+
- **Adaptive Designs:** Incorporate adaptive trial designs for efficiency.
|
181 |
+
|
182 |
+
## Regulatory Pathway Analysis
|
183 |
+
- **Pre-IND Consultation:** Initiate early dialogue with regulatory authorities.
|
184 |
+
- **IND Submission:** Prepare robust submissions with complete preclinical data.
|
185 |
+
- **Continuous Engagement:** Maintain ongoing communication with regulators.
|
186 |
+
- **Expedited Programs:** Explore Fast Track and Breakthrough Therapy designations.
|
187 |
+
|
188 |
+
## Commercial Potential Assessment
|
189 |
+
- **Market Research:** Analyze market trends and unmet needs.
|
190 |
+
- **Patient Segmentation:** Identify target patient demographics.
|
191 |
+
- **Pricing & Reimbursement:** Develop strategic pricing and reimbursement plans.
|
192 |
+
- **Go-To-Market Strategy:** Formulate a comprehensive marketing and sales plan.
|
193 |
+
"""
|
194 |
+
return simulated_response
|
195 |
|
196 |
# -----------------------------
|
197 |
+
# STREAMLIT INTERFACE
|
198 |
# -----------------------------
|
199 |
+
class PharmaResearchInterface:
|
200 |
+
"""
|
201 |
+
Streamlit interface for the Pharma Research Intelligence Suite using fallback data.
|
202 |
+
"""
|
203 |
def __init__(self):
|
204 |
+
self.engine = PharmaResearchEngine()
|
205 |
+
self.clinical_intel = ClinicalIntelligence()
|
206 |
+
self.ai_innovator = AIDrugInnovator()
|
207 |
+
self._configure_page()
|
208 |
+
|
209 |
+
def _configure_page(self):
|
210 |
st.set_page_config(
|
211 |
+
page_title="PRIS - Next-Generation Pharmaceutical Research Suite",
|
212 |
layout="wide",
|
|
|
213 |
initial_sidebar_state="expanded"
|
214 |
)
|
215 |
st.markdown("""
|
216 |
+
<style>
|
217 |
+
.main {background-color: #f0f2f6; padding: 20px;}
|
218 |
+
.stAlert {padding: 20px; font-size: 1.1em;}
|
219 |
+
.reportview-container .markdown-text-container {font-family: 'Helvetica Neue', Arial, sans-serif;}
|
220 |
+
</style>
|
|
|
221 |
""", unsafe_allow_html=True)
|
222 |
|
223 |
def render(self):
|
224 |
+
st.title("Next-Generation Pharmaceutical Research Intelligence Suite")
|
225 |
+
self._render_navigation()
|
226 |
|
227 |
+
def _render_navigation(self):
|
228 |
tabs = st.tabs([
|
229 |
+
"π Drug Innovation",
|
230 |
+
"π Trial Analytics",
|
231 |
+
"π§ͺ Compound Profiler",
|
232 |
+
"π Regulatory Hub",
|
233 |
+
"π€ AI Strategist"
|
234 |
])
|
235 |
+
with tabs[0]:
|
236 |
+
self._drug_innovation()
|
237 |
+
with tabs[1]:
|
238 |
+
self._trial_analytics()
|
239 |
+
with tabs[2]:
|
240 |
+
self._compound_profiler()
|
241 |
+
with tabs[3]:
|
242 |
+
self._regulatory_hub()
|
243 |
+
with tabs[4]:
|
244 |
+
self._ai_strategist()
|
245 |
+
|
246 |
+
def _drug_innovation(self):
|
247 |
+
st.header("AI-Powered Drug Innovation Engine")
|
248 |
+
col1, col2 = st.columns([1, 3])
|
249 |
with col1:
|
250 |
+
target = st.text_input("Target Pathobiology:", placeholder="e.g., EGFR mutant NSCLC")
|
251 |
+
paradigm = st.selectbox("Development Paradigm:", ["First-in-class", "Fast-follower", "Biologic", "ADC", "Gene Therapy"])
|
252 |
+
if st.button("Generate Development Blueprint"):
|
253 |
+
with st.spinner("Formulating strategic plan..."):
|
254 |
+
blueprint = self.ai_innovator.generate_strategy(target, paradigm)
|
255 |
+
st.markdown(blueprint, unsafe_allow_html=True)
|
256 |
+
|
257 |
+
def _trial_analytics(self):
|
258 |
+
st.header("Clinical Trial Landscape Analysis")
|
259 |
+
query = st.text_input("Search Clinical Trials:", placeholder="Enter condition, intervention, or NCT number")
|
260 |
+
if st.button("Analyze Trial Landscape"):
|
261 |
+
with st.spinner("Fetching trial data..."):
|
262 |
+
trials = self.clinical_intel.get_trial_landscape(query)
|
263 |
+
if trials:
|
264 |
+
st.subheader("Top Clinical Trials")
|
265 |
+
trial_data = []
|
266 |
+
for study in trials:
|
267 |
+
title = study.get("protocolSection", {}).get("identificationModule", {}).get("briefTitle", "N/A")
|
268 |
+
status = study.get("protocolSection", {}).get("statusModule", {}).get("overallStatus", "N/A")
|
269 |
+
phase = study.get("protocolSection", {}).get("designModule", {}).get("phases", ["N/A"])[0]
|
270 |
+
enrollment = study.get("protocolSection", {}).get("designModule", {}).get("enrollmentInfo", {}).get("count", "N/A")
|
271 |
+
trial_data.append({
|
272 |
+
"Title": title,
|
273 |
+
"Status": status,
|
274 |
+
"Phase": phase,
|
275 |
+
"Enrollment": enrollment
|
276 |
+
})
|
277 |
+
df = pd.DataFrame(trial_data)
|
278 |
+
st.dataframe(df)
|
279 |
+
st.subheader("Trial Phase Distribution")
|
280 |
+
phase_counts = df["Phase"].value_counts()
|
281 |
+
fig, ax = plt.subplots()
|
282 |
+
sns.barplot(x=phase_counts.index, y=phase_counts.values, ax=ax)
|
283 |
+
ax.set_xlabel("Trial Phase")
|
284 |
+
ax.set_ylabel("Number of Trials")
|
285 |
+
st.pyplot(fig)
|
286 |
+
else:
|
287 |
+
st.warning("No clinical trials found for the provided query.")
|
288 |
+
|
289 |
+
def _compound_profiler(self):
|
290 |
+
st.header("Advanced Multi-Omics Compound Profiler")
|
291 |
+
compound = st.text_input("Analyze Compound:", placeholder="Enter drug name or SMILES (e.g., Aspirin)")
|
292 |
+
if st.button("Profile Compound"):
|
293 |
+
with st.spinner("Decoding molecular profile..."):
|
294 |
+
profile = self.engine.get_compound_profile(compound)
|
295 |
+
if profile:
|
296 |
+
col1, col2 = st.columns(2)
|
297 |
+
with col1:
|
298 |
+
st.subheader("Structural Insights")
|
299 |
+
smiles = profile.get('canonical_smiles', '')
|
300 |
+
mol = Chem.MolFromSmiles(smiles) if smiles and smiles != "N/A" else None
|
301 |
+
if mol:
|
302 |
+
img = Draw.MolToImage(mol, size=(400, 300))
|
303 |
+
st.image(img, caption="2D Molecular Structure")
|
304 |
+
else:
|
305 |
+
st.error("Could not generate molecular structure image. Verify the SMILES string or compound name.")
|
306 |
+
with col2:
|
307 |
+
st.subheader("Physicochemical Profile")
|
308 |
+
st.metric("Molecular Weight", profile.get('molecular_weight', "N/A"))
|
309 |
+
st.metric("LogP", profile.get('logp', "N/A"))
|
310 |
+
st.metric("IUPAC Name", profile.get('iupac_name', "N/A"))
|
311 |
+
st.code(f"SMILES: {profile.get('canonical_smiles', 'N/A')}")
|
312 |
+
else:
|
313 |
+
st.warning("Compound profiling failed. Please ensure you have entered a valid chemical compound.")
|
314 |
+
|
315 |
+
def _regulatory_hub(self):
|
316 |
+
st.header("Regulatory Intelligence Hub")
|
317 |
+
st.write("Gain insights into FDA approvals and regulatory pathways using local sample data.")
|
318 |
+
drug_name = st.text_input("Enter Drug Name for Regulatory Analysis:", placeholder="e.g., Aspirin")
|
319 |
+
if st.button("Fetch Regulatory Data"):
|
320 |
+
sample_regulatory_data = {
|
321 |
+
"drug_name": drug_name,
|
322 |
+
"approval_status": "Approved",
|
323 |
+
"approval_date": "1985-07-01",
|
324 |
+
"label": "Sample regulatory label information."
|
325 |
}
|
326 |
+
st.subheader("FDA Approval Details")
|
327 |
+
st.json(sample_regulatory_data)
|
328 |
+
|
329 |
+
def _ai_strategist(self):
|
330 |
+
st.header("AI Drug Development Strategist")
|
331 |
+
st.write("Leverage our simulated GPT-4 engine to generate cutting-edge drug development strategies.")
|
332 |
+
target = st.text_input("Enter Target Disease or Pathway:", placeholder="e.g., KRAS G12C mutation")
|
333 |
+
if st.button("Generate AI Strategy"):
|
334 |
+
with st.spinner("Generating AI-driven strategy..."):
|
335 |
+
strategy = self.ai_innovator.generate_strategy(target, "First-in-class")
|
336 |
+
st.markdown(strategy, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
# -----------------------------
|
339 |
# MAIN EXECUTION
|
340 |
# -----------------------------
|
341 |
if __name__ == "__main__":
|
342 |
+
interface = PharmaResearchInterface()
|
343 |
+
interface.render()
|