# app/models.py from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline import torch # Load a domain-specific model (example: MatSciBERT for materials text) MATS_BERT_MODEL = "m3rg-iitd/matscibert" # adjust model name as needed tokenizer = AutoTokenizer.from_pretrained(MATS_BERT_MODEL) model = AutoModelForTokenClassification.from_pretrained(MATS_BERT_MODEL) # Create a pipeline for token classification (NER, relation extraction) ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") def extract_entities(text: str): """ Process text using a domain-specific BERT model to extract entities. """ results = ner_pipeline(text) # Format the output as a list of (entity, score, start, end) entities = [{"entity": r["entity_group"], "word": r["word"], "score": r["score"]} for r in results] return entities def answer_question(query: str): """ For demonstration, we use a simple approach. In practice, you may combine a retrieval step with a Q&A model. """ # For example purposes, we simulate an answer by echoing the query. # Replace this with your domain-specific Q&A logic. return f"Simulated answer for query: '{query}'" # Model loading and inference functions