Admin Idiakhoa
commited on
Commit
Β·
915668d
1
Parent(s):
15b7523
Add Hugging Face Space app files
Browse files- README.md +33 -7
- app.py +83 -0
- forge_agent.py +147 -0
- mock_mcp_servers/github_server.py +22 -0
- mock_mcp_servers/run_servers.py +18 -0
- mock_mcp_servers/sandbox_server.py +50 -0
- requirements.txt +6 -0
- src/forge_agent.py +99 -0
- src/mcp_client.py +45 -0
README.md
CHANGED
@@ -1,12 +1,38 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
|
|
8 |
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Forge AI Agent
|
3 |
+
emoji: Forge AI Agent π
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.28.3
|
8 |
+
python_version: 3.10
|
9 |
app_file: app.py
|
|
|
10 |
---
|
11 |
|
12 |
+
# Forge - The Autonomous AI Software Engineer
|
13 |
+
|
14 |
+
This Hugging Face Space demonstrates the "Forge" concept: an autonomous AI agent that can understand a high-level goal, create a plan, and execute it using a suite of tools exposed via the Model Context Protocol (MCP).
|
15 |
+
|
16 |
+
## How It Works
|
17 |
+
|
18 |
+
1. **User Goal**: You provide a high-level software development task in the textbox.
|
19 |
+
2. **Planning**: An AI agent (mocked in this demo) receives the goal and a list of available tools. It generates a step-by-step plan to achieve the goal.
|
20 |
+
3. **Execution**: The Forge orchestrator executes each step in the plan by calling the appropriate tool from a mock MCP server.
|
21 |
+
4. **Live Feedback**: The agent's thoughts, actions, and results are streamed to the UI in real-time.
|
22 |
+
|
23 |
+
## Running Locally
|
24 |
+
|
25 |
+
This application is designed to be self-contained, but for local development, you need to run the mock MCP servers that the agent communicates with.
|
26 |
+
|
27 |
+
1. **Install dependencies:**
|
28 |
+
```bash
|
29 |
+
pip install -r requirements.txt
|
30 |
+
```
|
31 |
+
2. **Run the mock servers in a separate terminal:**
|
32 |
+
```bash
|
33 |
+
python mock_mcp_servers/run_servers.py
|
34 |
+
```
|
35 |
+
3. **Run the Gradio app:**
|
36 |
+
```bash
|
37 |
+
gradio app.py
|
38 |
+
```
|
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import asyncio
|
3 |
+
import os
|
4 |
+
import multiprocessing
|
5 |
+
import uvicorn
|
6 |
+
import time
|
7 |
+
from src.forge_agent import ForgeApp
|
8 |
+
|
9 |
+
def run_server(app_path: str, port: int):
|
10 |
+
"""Helper function to run a uvicorn server."""
|
11 |
+
uvicorn.run(app_path, host="127.0.0.1", port=port, log_level="info")
|
12 |
+
|
13 |
+
# --- Launch background MCP servers ---
|
14 |
+
# This code runs once when the Gradio app starts.
|
15 |
+
servers_to_run = {
|
16 |
+
"mock_mcp_servers.github_server:app": 8001,
|
17 |
+
"mock_mcp_servers.sandbox_server:app": 8002,
|
18 |
+
}
|
19 |
+
for app_path, port in servers_to_run.items():
|
20 |
+
process = multiprocessing.Process(target=run_server, args=(app_path, port), daemon=True)
|
21 |
+
process.start()
|
22 |
+
time.sleep(2) # Give servers a moment to start
|
23 |
+
|
24 |
+
async def run_forge_agent(goal: str, hf_token: str, progress=gr.Progress(track_tqdm=True)):
|
25 |
+
"""
|
26 |
+
The main function to be called by the Gradio interface.
|
27 |
+
It instantiates and runs the ForgeApp, yielding updates to the UI.
|
28 |
+
"""
|
29 |
+
if not goal:
|
30 |
+
yield "Please enter a goal.", ""
|
31 |
+
return
|
32 |
+
|
33 |
+
if not hf_token:
|
34 |
+
yield [("Please provide a Hugging Face API Token to use the planner agent.", None)]
|
35 |
+
return
|
36 |
+
|
37 |
+
# These are the URLs for our mock servers. In a real scenario,
|
38 |
+
# these could point to any deployed MCP server.
|
39 |
+
mcp_server_urls = [
|
40 |
+
"http://127.0.0.1:8001", # Mock GitHub Server
|
41 |
+
"http://127.0.0.1:8002", # Mock Sandbox Server
|
42 |
+
]
|
43 |
+
|
44 |
+
app = ForgeApp(goal=goal, mcp_server_urls=mcp_server_urls, hf_token=hf_token)
|
45 |
+
|
46 |
+
# The chatbot history will store the conversation
|
47 |
+
chatbot_history = []
|
48 |
+
full_log = ""
|
49 |
+
|
50 |
+
# The run method is a generator, yielding updates as it progresses.
|
51 |
+
async for update in app.run():
|
52 |
+
# Append the update to the full log and update the chatbot history
|
53 |
+
full_log += update + "\n"
|
54 |
+
chatbot_history.append((None, update.strip()))
|
55 |
+
yield chatbot_history
|
56 |
+
|
57 |
+
|
58 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
59 |
+
gr.Markdown("# π Forge - The Autonomous AI Agent")
|
60 |
+
gr.Markdown("Enter a high-level goal, and watch the AI agent create and execute a plan to achieve it.")
|
61 |
+
|
62 |
+
chatbot = gr.Chatbot(label="Agent Log", height=500, show_copy_button=True)
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
goal_input = gr.Textbox(
|
66 |
+
label="Agent's Goal",
|
67 |
+
placeholder="e.g., Scaffold a new Next.js blog and create a GitHub repo for it.",
|
68 |
+
scale=4,
|
69 |
+
)
|
70 |
+
run_button = gr.Button("Start", variant="primary", scale=1)
|
71 |
+
|
72 |
+
with gr.Accordion("Advanced Settings", open=False):
|
73 |
+
hf_token_input = gr.Textbox(
|
74 |
+
label="Hugging Face API Token",
|
75 |
+
placeholder="hf_...",
|
76 |
+
type="password",
|
77 |
+
value=os.environ.get("HF_TOKEN", ""), # Read from Space secrets if available
|
78 |
+
)
|
79 |
+
|
80 |
+
run_button.click(fn=run_forge_agent, inputs=[goal_input, hf_token_input], outputs=[chatbot])
|
81 |
+
|
82 |
+
if __name__ == "__main__":
|
83 |
+
demo.launch()
|
forge_agent.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import json
|
3 |
+
from typing import List, Dict, Any
|
4 |
+
from huggingface_hub import AsyncInferenceClient
|
5 |
+
from .mcp_client import MCPClient
|
6 |
+
|
7 |
+
class ToolRegistry:
|
8 |
+
"""Manages connections to all required MCP servers and their tools."""
|
9 |
+
def __init__(self, server_urls: List[str]):
|
10 |
+
self.servers: Dict[str, MCPClient] = {url: MCPClient(url) for url in server_urls}
|
11 |
+
self.tools: Dict[str, Dict[str, Any]] = {}
|
12 |
+
|
13 |
+
async def discover_tools(self):
|
14 |
+
"""Discovers all available tools from all connected MCP servers."""
|
15 |
+
discovery_tasks = [client.list_tools() for client in self.servers.values()]
|
16 |
+
results = await asyncio.gather(*discovery_tasks, return_exceptions=True)
|
17 |
+
|
18 |
+
for i, client in enumerate(self.servers.values()):
|
19 |
+
server_tools = results[i]
|
20 |
+
if isinstance(server_tools, list):
|
21 |
+
for tool in server_tools:
|
22 |
+
self.tools[tool["name"]] = {"client": client, "description": tool["description"]}
|
23 |
+
|
24 |
+
async def execute(self, tool_name: str, params: Dict[str, Any]) -> Dict[str, Any]:
|
25 |
+
"""Finds the correct MCP server and executes the tool."""
|
26 |
+
if tool_name not in self.tools:
|
27 |
+
raise ValueError(f"Tool '{tool_name}' not found in registry.")
|
28 |
+
tool_info = self.tools[tool_name]
|
29 |
+
return await tool_info["client"].execute_tool(tool_name, params)
|
30 |
+
|
31 |
+
async def close_all(self):
|
32 |
+
"""Closes all client connections."""
|
33 |
+
await asyncio.gather(*(client.close() for client in self.servers.values()))
|
34 |
+
|
35 |
+
class HuggingFaceAgent:
|
36 |
+
"""An AI agent that uses a Hugging Face model to generate plans."""
|
37 |
+
def __init__(self, hf_token: str, model_name: str = "mistralai/Mixtral-8x7B-Instruct-v0.1"):
|
38 |
+
self.model = model_name
|
39 |
+
self.client = AsyncInferenceClient(model=model_name, token=hf_token)
|
40 |
+
|
41 |
+
def _construct_prompt(self, goal: str, available_tools: List[Dict[str, Any]], previous_steps: List = None, error: str = None) -> str:
|
42 |
+
"""Constructs the detailed prompt for the LLM."""
|
43 |
+
tools_json_string = json.dumps(available_tools, indent=2)
|
44 |
+
|
45 |
+
prompt = f"""You are Forge, an autonomous AI agent. Your task is to create a step-by-step plan to achieve a goal.
|
46 |
+
You must respond with a valid JSON array of objects, where each object represents a step in the plan.
|
47 |
+
Each step must have 'step', 'thought', 'tool', and 'params' keys.
|
48 |
+
The final step must always use the 'report_success' tool.
|
49 |
+
|
50 |
+
Available Tools:
|
51 |
+
{tools_json_string}
|
52 |
+
|
53 |
+
Goal: "{goal}"
|
54 |
+
"""
|
55 |
+
if previous_steps:
|
56 |
+
prompt += f"\nYou have already completed these steps:\n{json.dumps(previous_steps, indent=2)}\n"
|
57 |
+
if error:
|
58 |
+
prompt += f"\nAn error occurred during the last step: {error}\nAnalyze the error and create a new, corrected plan to achieve the original goal. Start the new plan from the current state."
|
59 |
+
|
60 |
+
prompt += "\nGenerate the JSON plan now:"
|
61 |
+
return prompt
|
62 |
+
|
63 |
+
async def _invoke_llm(self, prompt: str) -> List[Dict[str, Any]]:
|
64 |
+
"""Invokes the LLM and parses the JSON response."""
|
65 |
+
try:
|
66 |
+
response = await self.client.text_generation(prompt, max_new_tokens=1024)
|
67 |
+
# The response might contain the JSON within backticks or other text.
|
68 |
+
json_response_str = response.strip().split('```json')[-1].split('```')[0].strip()
|
69 |
+
plan = json.loads(json_response_str)
|
70 |
+
if isinstance(plan, list):
|
71 |
+
return plan
|
72 |
+
else:
|
73 |
+
raise ValueError("LLM did not return a JSON list.")
|
74 |
+
except (json.JSONDecodeError, ValueError, IndexError) as e:
|
75 |
+
print(f"Error parsing LLM response: {e}\nRaw response:\n{response}")
|
76 |
+
# Fallback or re-try logic could be added here
|
77 |
+
return [{"step": 1, "thought": "Failed to generate a plan due to a parsing error.", "tool": "report_failure", "params": {"message": f"LLM response parsing failed: {e}"}}]
|
78 |
+
|
79 |
+
async def generate_plan(self, goal: str, available_tools: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
80 |
+
"""
|
81 |
+
Generates a step-by-step plan.
|
82 |
+
"""
|
83 |
+
prompt = self._construct_prompt(goal, available_tools)
|
84 |
+
return await self._invoke_llm(prompt)
|
85 |
+
|
86 |
+
async def regenerate_plan_on_error(self, goal: str, available_tools: List[Dict[str, Any]], completed_steps: List, error_message: str) -> List[Dict[str, Any]]:
|
87 |
+
"""Generates a new plan after an error occurred."""
|
88 |
+
prompt = self._construct_prompt(goal, available_tools, previous_steps=completed_steps, error=error_message)
|
89 |
+
return await self._invoke_llm(prompt)
|
90 |
+
|
91 |
+
class ForgeApp:
|
92 |
+
"""The main orchestrator for the Forge application."""
|
93 |
+
def __init__(self, goal: str, mcp_server_urls: List[str], hf_token: str):
|
94 |
+
self.goal = goal
|
95 |
+
self.planner = HuggingFaceAgent(hf_token=hf_token)
|
96 |
+
self.tool_registry = ToolRegistry(server_urls=mcp_server_urls)
|
97 |
+
|
98 |
+
async def run(self):
|
99 |
+
"""
|
100 |
+
Runs the agent and yields status updates as a generator.
|
101 |
+
"""
|
102 |
+
yield "π **Starting Forge... Initializing systems.**"
|
103 |
+
await self.tool_registry.discover_tools()
|
104 |
+
yield f"β
**Tool Discovery Complete.** Found {len(self.tool_registry.tools)} tools."
|
105 |
+
|
106 |
+
# Provide the LLM with full tool details, not just names
|
107 |
+
available_tools_details = [{"name": name, "description": data["description"]} for name, data in self.tool_registry.tools.items()]
|
108 |
+
|
109 |
+
yield f"π§ **Generating a plan for your goal:** '{self.goal}'"
|
110 |
+
plan = await self.planner.generate_plan(self.goal, available_tools_details)
|
111 |
+
yield "π **Plan Generated!** Starting execution..."
|
112 |
+
|
113 |
+
completed_steps = []
|
114 |
+
while plan:
|
115 |
+
task = plan.pop(0)
|
116 |
+
yield f"\n**[Step {task.get('step', '?')}]** π€ **Thought:** {task.get('thought', 'N/A')}"
|
117 |
+
|
118 |
+
tool_name = task.get("tool")
|
119 |
+
if tool_name in ["report_success", "report_failure"]:
|
120 |
+
emoji = "π" if tool_name == "report_success" else "π"
|
121 |
+
yield f"{emoji} **Final Result:** {task.get('params', {}).get('message', 'N/A')}"
|
122 |
+
plan = [] # End execution
|
123 |
+
continue
|
124 |
+
|
125 |
+
try:
|
126 |
+
yield f"π οΈ **Action:** Executing tool `{tool_name}` with params: `{task.get('params', {})}`"
|
127 |
+
result = await self.tool_registry.execute(tool_name, task.get("params", {}))
|
128 |
+
|
129 |
+
if result.get("status") == "error":
|
130 |
+
error_message = result.get('result', 'Unknown error')
|
131 |
+
yield f"β **Error:** {error_message}"
|
132 |
+
yield "π§ **Agent is re-evaluating the plan based on the error...**"
|
133 |
+
completed_steps.append({"step": task, "outcome": "error", "details": error_message})
|
134 |
+
plan = await self.planner.regenerate_plan_on_error(self.goal, available_tools_details, completed_steps, error_message)
|
135 |
+
yield "π **New Plan Generated!** Resuming execution..."
|
136 |
+
else:
|
137 |
+
observation = result.get('result', 'Tool executed successfully.')
|
138 |
+
yield f"β
**Observation:** {observation}"
|
139 |
+
completed_steps.append({"step": task, "outcome": "success", "details": observation})
|
140 |
+
|
141 |
+
except Exception as e:
|
142 |
+
yield f"β **Critical Error executing step {task.get('step', '?')}:** {e}"
|
143 |
+
yield "π **Execution Halted due to critical error.**"
|
144 |
+
plan = [] # End execution
|
145 |
+
|
146 |
+
await self.tool_registry.close_all()
|
147 |
+
yield "\nπ **Forge execution finished.**"
|
mock_mcp_servers/github_server.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
|
3 |
+
app = FastAPI()
|
4 |
+
|
5 |
+
@app.get("/mcp/tools")
|
6 |
+
async def list_tools():
|
7 |
+
return {
|
8 |
+
"tools": [
|
9 |
+
{
|
10 |
+
"name": "create_repo",
|
11 |
+
"description": "Creates a new GitHub repository.",
|
12 |
+
"input_schema": {"name": "string", "private": "boolean"},
|
13 |
+
}
|
14 |
+
]
|
15 |
+
}
|
16 |
+
|
17 |
+
@app.post("/mcp/tools/create_repo")
|
18 |
+
async def create_repo(payload: dict):
|
19 |
+
params = payload.get("params", {})
|
20 |
+
repo_name = params.get("name", "unnamed-repo")
|
21 |
+
print(f"[GitHub Server] Received request to create repo: {repo_name}")
|
22 |
+
return {"status": "success", "result": f"Successfully created GitHub repository '{repo_name}'."}
|
mock_mcp_servers/run_servers.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uvicorn
|
2 |
+
import multiprocessing
|
3 |
+
|
4 |
+
def run_github_server():
|
5 |
+
uvicorn.run("mock_mcp_servers.github_server:app", host="127.0.0.1", port=8001, log_level="info")
|
6 |
+
|
7 |
+
def run_sandbox_server():
|
8 |
+
uvicorn.run("mock_mcp_servers.sandbox_server:app", host="127.0.0.1", port=8002, log_level="info")
|
9 |
+
|
10 |
+
if __name__ == "__main__":
|
11 |
+
p1 = multiprocessing.Process(target=run_github_server)
|
12 |
+
p2 = multiprocessing.Process(target=run_sandbox_server)
|
13 |
+
|
14 |
+
p1.start()
|
15 |
+
p2.start()
|
16 |
+
|
17 |
+
p1.join()
|
18 |
+
p2.join()
|
mock_mcp_servers/sandbox_server.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
import subprocess
|
3 |
+
import os
|
4 |
+
|
5 |
+
app = FastAPI()
|
6 |
+
|
7 |
+
@app.get("/mcp/tools")
|
8 |
+
async def list_tools():
|
9 |
+
return {
|
10 |
+
"tools": [
|
11 |
+
{
|
12 |
+
"name": "execute_shell",
|
13 |
+
"description": "Executes a shell command in a secure sandbox.",
|
14 |
+
"input_schema": {"type": "object", "properties": {"command": {"type": "string"}}, "required": ["command"]},
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"name": "list_files",
|
18 |
+
"description": "Lists files and directories in a given path within the sandbox.",
|
19 |
+
"input_schema": {"type": "object", "properties": {"path": {"type": "string"}}, "required": ["path"]},
|
20 |
+
}
|
21 |
+
]
|
22 |
+
}
|
23 |
+
|
24 |
+
@app.post("/mcp/tools/execute_shell")
|
25 |
+
async def execute_shell(payload: dict):
|
26 |
+
params = payload.get("params", {})
|
27 |
+
command = params.get("command")
|
28 |
+
if not command:
|
29 |
+
return {"status": "error", "result": "No command provided."}
|
30 |
+
|
31 |
+
print(f"[Sandbox Server] Executing: {command}")
|
32 |
+
try:
|
33 |
+
# In a real-world scenario, this would be a heavily secured, isolated container.
|
34 |
+
# For this demo, we use subprocess with a timeout.
|
35 |
+
result = subprocess.run(command, shell=True, capture_output=True, text=True, timeout=30, check=True)
|
36 |
+
output = f"STDOUT:\n{result.stdout}\nSTDERR:\n{result.stderr}"
|
37 |
+
return {"status": "success", "result": output}
|
38 |
+
except subprocess.CalledProcessError as e:
|
39 |
+
return {"status": "error", "result": f"Command failed with exit code {e.returncode}.\nSTDOUT:\n{e.stdout}\nSTDERR:\n{e.stderr}"}
|
40 |
+
except subprocess.TimeoutExpired:
|
41 |
+
return {"status": "error", "result": "Command timed out after 30 seconds."}
|
42 |
+
|
43 |
+
@app.post("/mcp/tools/list_files")
|
44 |
+
async def list_files(payload: dict):
|
45 |
+
path = payload.get("params", {}).get("path", ".")
|
46 |
+
try:
|
47 |
+
files = os.listdir(path)
|
48 |
+
return {"status": "success", "result": f"Files in '{path}': {files}"}
|
49 |
+
except FileNotFoundError:
|
50 |
+
return {"status": "error", "result": f"Path not found: {path}"}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.28.3
|
2 |
+
httpx==0.27.0
|
3 |
+
fastapi==0.111.0
|
4 |
+
uvicorn==0.29.0
|
5 |
+
aiohttp==3.9.5
|
6 |
+
huggingface_hub==0.22.2
|
src/forge_agent.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
from typing import List, Dict, Any
|
3 |
+
from .mcp_client import MCPClient
|
4 |
+
|
5 |
+
class ToolRegistry:
|
6 |
+
"""Manages connections to all required MCP servers and their tools."""
|
7 |
+
def __init__(self, server_urls: List[str]):
|
8 |
+
self.servers: Dict[str, MCPClient] = {url: MCPClient(url) for url in server_urls}
|
9 |
+
self.tools: Dict[str, Dict[str, Any]] = {}
|
10 |
+
|
11 |
+
async def discover_tools(self):
|
12 |
+
"""Discovers all available tools from all connected MCP servers."""
|
13 |
+
discovery_tasks = [client.list_tools() for client in self.servers.values()]
|
14 |
+
results = await asyncio.gather(*discovery_tasks, return_exceptions=True)
|
15 |
+
|
16 |
+
for i, client in enumerate(self.servers.values()):
|
17 |
+
server_tools = results[i]
|
18 |
+
if isinstance(server_tools, list):
|
19 |
+
for tool in server_tools:
|
20 |
+
self.tools[tool["name"]] = {"client": client, "description": tool["description"]}
|
21 |
+
|
22 |
+
async def execute(self, tool_name: str, params: Dict[str, Any]) -> Dict[str, Any]:
|
23 |
+
"""Finds the correct MCP server and executes the tool."""
|
24 |
+
if tool_name not in self.tools:
|
25 |
+
raise ValueError(f"Tool '{tool_name}' not found in registry.")
|
26 |
+
tool_info = self.tools[tool_name]
|
27 |
+
return await tool_info["client"].execute_tool(tool_name, params)
|
28 |
+
|
29 |
+
async def close_all(self):
|
30 |
+
"""Closes all client connections."""
|
31 |
+
await asyncio.gather(*(client.close() for client in self.servers.values()))
|
32 |
+
|
33 |
+
class AIAgent:
|
34 |
+
"""A mock AI agent that generates a plan based on a goal."""
|
35 |
+
def __init__(self, model_name: str = "mock-planner"):
|
36 |
+
self.model = model_name
|
37 |
+
|
38 |
+
async def generate_plan(self, goal: str, available_tools: List[str]) -> List[Dict[str, Any]]:
|
39 |
+
"""
|
40 |
+
Generates a step-by-step plan.
|
41 |
+
In a real application, this would involve a call to a powerful LLM.
|
42 |
+
Here, we use a hardcoded plan for demonstration.
|
43 |
+
"""
|
44 |
+
await asyncio.sleep(1) # Simulate LLM thinking time
|
45 |
+
|
46 |
+
# This is a mock plan. A real LLM would generate this dynamically.
|
47 |
+
plan = [
|
48 |
+
{"step": 1, "thought": "I need a place to store the code. I'll use the `create_repo` tool.", "tool": "create_repo", "params": {"name": "my-awesome-blog", "private": False}},
|
49 |
+
{"step": 2, "thought": "Now I need to scaffold a new Next.js application inside a secure sandbox.", "tool": "execute_shell", "params": {"command": "npx create-next-app@latest my-awesome-blog --yes"}},
|
50 |
+
{"step": 3, "thought": "The project is created. I should commit the initial code.", "tool": "execute_shell", "params": {"command": "cd my-awesome-blog && git init && git add . && git commit -m 'Initial commit'"}},
|
51 |
+
{"step": 4, "thought": "The plan is complete. I will report success.", "tool": "report_success", "params": {"message": "Blog project scaffolded successfully."}}
|
52 |
+
]
|
53 |
+
return plan
|
54 |
+
|
55 |
+
class ForgeApp:
|
56 |
+
"""The main orchestrator for the Forge application."""
|
57 |
+
def __init__(self, goal: str, mcp_server_urls: List[str]):
|
58 |
+
self.goal = goal
|
59 |
+
self.planner = AIAgent()
|
60 |
+
self.tool_registry = ToolRegistry(server_urls=mcp_server_urls)
|
61 |
+
|
62 |
+
async def run(self):
|
63 |
+
"""
|
64 |
+
Runs the agent and yields status updates as a generator.
|
65 |
+
"""
|
66 |
+
yield "π **Starting Forge... Initializing systems.**"
|
67 |
+
await self.tool_registry.discover_tools()
|
68 |
+
yield f"β
**Tool Discovery Complete.** Found {len(self.tool_registry.tools)} tools."
|
69 |
+
|
70 |
+
available_tool_names = list(self.tool_registry.tools.keys())
|
71 |
+
yield f"π§ **Generating a plan for your goal:** '{self.goal}'"
|
72 |
+
plan = await self.planner.generate_plan(self.goal, available_tool_names)
|
73 |
+
yield "π **Plan Generated!** Starting execution..."
|
74 |
+
|
75 |
+
for task in plan:
|
76 |
+
yield f"\n**[Step {task['step']}]** π€ **Thought:** {task['thought']}"
|
77 |
+
|
78 |
+
if task["tool"] == "report_success":
|
79 |
+
yield f"π **Final Result:** {task['params']['message']}"
|
80 |
+
break
|
81 |
+
|
82 |
+
try:
|
83 |
+
yield f"π οΈ **Action:** Executing tool `{task['tool']}` with params: `{task['params']}`"
|
84 |
+
result = await self.tool_registry.execute(task["tool"], task["params"])
|
85 |
+
|
86 |
+
if result.get("status") == "error":
|
87 |
+
yield f"β **Error:** {result.get('result', 'Unknown error')}"
|
88 |
+
yield "π **Execution Halted due to error.**"
|
89 |
+
break
|
90 |
+
else:
|
91 |
+
yield f"β
**Observation:** {result.get('result', 'Tool executed successfully.')}"
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
yield f"β **Critical Error executing step {task['step']}:** {e}"
|
95 |
+
yield "π **Execution Halted due to critical error.**"
|
96 |
+
break
|
97 |
+
|
98 |
+
await self.tool_registry.close_all()
|
99 |
+
yield "\nπ **Forge execution finished.**"
|
src/mcp_client.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import httpx
|
2 |
+
from typing import List, Dict, Any
|
3 |
+
|
4 |
+
class MCPClient:
|
5 |
+
"""
|
6 |
+
A client for interacting with a Model Context Protocol (MCP) server.
|
7 |
+
Handles listing and executing tools via HTTP requests.
|
8 |
+
"""
|
9 |
+
def __init__(self, server_url: str):
|
10 |
+
self.server_url = server_url.rstrip('/')
|
11 |
+
self.http_client = httpx.AsyncClient(timeout=30.0)
|
12 |
+
|
13 |
+
async def list_tools(self) -> List[Dict[str, Any]]:
|
14 |
+
"""Fetches the list of available tools from the MCP server."""
|
15 |
+
try:
|
16 |
+
response = await self.http_client.get(f"{self.server_url}/mcp/tools")
|
17 |
+
response.raise_for_status()
|
18 |
+
tools_response = response.json()
|
19 |
+
# Ensure the response is in the expected format
|
20 |
+
if "tools" in tools_response and isinstance(tools_response["tools"], list):
|
21 |
+
return tools_response["tools"]
|
22 |
+
return []
|
23 |
+
except (httpx.RequestError, httpx.HTTPStatusError) as e:
|
24 |
+
print(f"Error fetching tools from {self.server_url}: {e}")
|
25 |
+
return []
|
26 |
+
|
27 |
+
async def execute_tool(self, tool_name: str, params: Dict[str, Any]) -> Dict[str, Any]:
|
28 |
+
"""Executes a specific tool on the MCP server with the given parameters."""
|
29 |
+
try:
|
30 |
+
response = await self.http_client.post(
|
31 |
+
f"{self.server_url}/mcp/tools/{tool_name}",
|
32 |
+
json={"params": params}
|
33 |
+
)
|
34 |
+
response.raise_for_status()
|
35 |
+
return response.json()
|
36 |
+
except (httpx.RequestError, httpx.HTTPStatusError) as e:
|
37 |
+
print(f"Error executing tool '{tool_name}' on {self.server_url}: {e}")
|
38 |
+
return {
|
39 |
+
"status": "error",
|
40 |
+
"result": f"Failed to connect or execute tool on {self.server_url}. Error: {e}"
|
41 |
+
}
|
42 |
+
|
43 |
+
async def close(self):
|
44 |
+
"""Closes the underlying HTTP client."""
|
45 |
+
await self.http_client.aclose()
|