File size: 14,402 Bytes
bdb09c8 b296b05 b9dbc6c bdb09c8 b9dbc6c bdb09c8 b296b05 b9dbc6c b296b05 b9dbc6c bdb09c8 b9dbc6c 97685a7 b296b05 b9dbc6c b296b05 b9dbc6c 97685a7 b9dbc6c 97685a7 b296b05 97685a7 b9dbc6c 97685a7 b9dbc6c bdb09c8 b296b05 bdb09c8 b9dbc6c b296b05 b9dbc6c 97685a7 c6163b1 97685a7 c6163b1 97685a7 b296b05 b9dbc6c 97685a7 b296b05 b9dbc6c 97685a7 b296b05 b9dbc6c b296b05 97685a7 c6163b1 b296b05 b9dbc6c b296b05 b9dbc6c b296b05 b9dbc6c 97685a7 b9dbc6c 97685a7 b9dbc6c 97685a7 b9dbc6c 97685a7 b9dbc6c 97685a7 b9dbc6c bdb09c8 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 b9dbc6c 97685a7 b9dbc6c 97685a7 b9dbc6c bdb09c8 97685a7 b9dbc6c bdb09c8 97685a7 b9dbc6c 97685a7 b9dbc6c 97685a7 b9dbc6c 97685a7 b9dbc6c 97685a7 b296b05 97685a7 b9dbc6c b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 b296b05 97685a7 bdb09c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import streamlit as st
import google.generativeai as genai
import os
from PIL import Image
import io # Needed for handling image bytes
from typing import Optional, Tuple, Any # For type hinting
# --- Configuration and Initialization ---
# Securely load API key
# Prioritize Streamlit secrets, fall back to environment variable for flexibility
GEMINI_API_KEY = st.secrets.get("GEMINI_API_KEY", os.environ.get("GEMINI_API_KEY"))
# Configure Gemini Client (only if key is found)
genai_client_configured = False
if GEMINI_API_KEY:
try:
genai.configure(api_key=GEMINI_API_KEY)
genai_client_configured = True
except Exception as e:
st.error(f"Fatal Error: Failed to configure Google Generative AI. Check API Key. Details: {e}")
st.stop() # Stop execution if configuration fails
else:
st.error("โ ๏ธ Gemini API Key not found. Please configure `GEMINI_API_KEY` in Streamlit secrets or environment variables.")
st.stop() # Stop execution if no API key
# Initialize models (Consider more powerful model for agentic reasoning if needed)
# Using 1.5 Pro for text (agentic) and 1.5 Flash for vision might be a good balance
TEXT_MODEL_NAME = 'gemini-1.5-pro-latest' # Model for agentic text reasoning
VISION_MODEL_NAME = 'gemini-1.5-flash' # Model for image analysis
if genai_client_configured:
try:
text_model = genai.GenerativeModel(TEXT_MODEL_NAME)
vision_model = genai.GenerativeModel(VISION_MODEL_NAME)
st.success(f"Successfully initialized models: Text ({TEXT_MODEL_NAME}), Vision ({VISION_MODEL_NAME})", icon="โ
")
except Exception as e:
st.error(f"Fatal Error: Failed to initialize Gemini models. Text: {TEXT_MODEL_NAME}, Vision: {VISION_MODEL_NAME}. Details: {e}")
st.stop()
else:
st.error("AI Models could not be initialized due to configuration issues.")
st.stop()
# --- Core AI Interaction Functions ---
# AGENTIC prompt for Text Analysis
AGENTIC_TEXT_ANALYSIS_PROMPT_TEMPLATE = """
**Simulated Clinical Reasoning Agent Task:**
**Role:** AI assistant simulating an agentic clinical reasoning process to support a healthcare professional by structuring information, generating possibilities, and suggesting investigation pathways based *strictly* on the provided text. **This is NOT a diagnosis.**
**Input Data:** Unstructured clinical information (e.g., symptoms, history, basic findings).
**Simulated Agentic Steps (Perform sequentially):**
1. **Information Extraction & Structuring:**
* Key Demographics (Age, Sex if provided).
* Primary Symptoms/Signs.
* Relevant Medical History.
* Pertinent Negatives (if mentioned).
2. **Differential Considerations Generation:**
* Based *only* on Step 1, list **potential differential considerations** (possible conditions).
* **Use cautious language:** "could be consistent with," "warrants consideration," "less likely but possible." **AVOID definitive statements.**
* Briefly justify each consideration based on findings.
3. **Information Gap Analysis:**
* Identify critical missing information (e.g., lab results, imaging, exam specifics, duration/onset).
4. **Suggested Next Steps for Investigation (for Clinician):**
* Propose logical next steps a **healthcare professional might consider**.
* Categorize (e.g., Further History, Exam Points, Labs, Imaging).
* Frame as *suggestions* (e.g., "Consider ordering...", "Assessment of X may be informative").
5. **Mandatory Disclaimer:** Conclude with: "This AI-generated analysis is for informational support only. It is **NOT** a diagnosis and cannot replace the judgment of a qualified healthcare professional."
**Input Clinical Information:**
---
{text_input}
---
**Agentic Analysis:**
"""
# Standard prompt for Image Analysis
IMAGE_ANALYSIS_PROMPT_TEMPLATE = """
**Medical Image Analysis Request:**
**Context:** Analyze the provided medical image. User may provide additional context or questions.
**Task:**
1. **Describe Visible Structures:** Briefly describe main anatomical structures.
2. **Identify Potential Anomalies:** Point out areas that *appear* abnormal or deviate from typical presentation (e.g., "potential opacity," "altered signal intensity," "possible asymmetry"). Use cautious, descriptive language.
3. **Correlate with User Prompt (if provided):** Address specific user questions based *only* on visual information.
4. **Limitations:** State that image quality, view, and lack of clinical context limit analysis.
5. **Disclaimer:** Explicitly state this is AI visual analysis, not radiological interpretation or diagnosis, requiring review by a qualified professional with clinical context.
**User's Additional Context/Question (if any):**
---
{user_prompt}
---
**Image Analysis:**
"""
def run_agentic_text_analysis(text_input: str) -> Tuple[Optional[str], Optional[str]]:
"""
Sends clinical text to the Gemini text model for simulated agentic analysis.
Args:
text_input: The clinical text provided by the user.
Returns:
Tuple: (analysis_text, error_message)
"""
if not text_input or not text_input.strip():
return None, "Input text cannot be empty."
try:
prompt = AGENTIC_TEXT_ANALYSIS_PROMPT_TEMPLATE.format(text_input=text_input)
# Using the designated text model
response = text_model.generate_content(prompt)
if response.parts:
return response.text, None
elif response.prompt_feedback.block_reason:
return None, f"Analysis blocked by safety filters: {response.prompt_feedback.block_reason.name}. Review input."
else:
candidate = response.candidates[0] if response.candidates else None
if candidate and candidate.finish_reason != "STOP":
return None, f"Analysis stopped prematurely. Reason: {candidate.finish_reason.name}."
else:
return None, "Received an empty or unexpected response from the AI model."
except Exception as e:
st.error(f"Error during agentic text analysis: {e}", icon="๐จ")
return None, f"Error communicating with the AI model for text analysis. Details: {e}"
def analyze_medical_image(image_file: Any, user_prompt: str = "") -> Tuple[Optional[str], Optional[str]]:
"""
Sends a medical image (and optional prompt) to the Gemini Vision model for analysis.
Args:
image_file: Uploaded image file object from Streamlit.
user_prompt: Optional text context/questions from the user.
Returns:
Tuple: (analysis_text, error_message)
"""
if not image_file:
return None, "Image file cannot be empty."
try:
try:
image = Image.open(image_file)
if image.mode != 'RGB':
image = image.convert('RGB')
except Exception as img_e:
return None, f"Error opening or processing image file: {img_e}"
prompt_text = IMAGE_ANALYSIS_PROMPT_TEMPLATE.format(user_prompt=user_prompt if user_prompt else "N/A")
model_input = [prompt_text, image]
# Using the designated vision model
response = vision_model.generate_content(model_input)
if response.parts:
return response.text, None
elif response.prompt_feedback.block_reason:
return None, f"Image analysis blocked by safety filters: {response.prompt_feedback.block_reason.name}. May relate to sensitive content policies."
else:
candidate = response.candidates[0] if response.candidates else None
if candidate and candidate.finish_reason != "STOP":
return None, f"Image analysis stopped prematurely. Reason: {candidate.finish_reason.name}."
else:
return None, "Received an empty or unexpected response from the AI model for image analysis."
except Exception as e:
st.error(f"Error during image analysis: {e}", icon="๐ผ๏ธ")
return None, f"Error communicating with the AI model for image analysis. Details: {e}"
# --- Streamlit User Interface ---
def main():
st.set_page_config(
page_title="AI Clinical Support Demonstrator",
layout="wide",
initial_sidebar_state="expanded"
)
st.title("๐ค AI Clinical Support Demonstrator")
st.caption(f"Agentic Text Analysis ({TEXT_MODEL_NAME}) & Image Analysis ({VISION_MODEL_NAME})")
st.markdown("---")
# --- CRITICAL DISCLAIMER ---
st.warning(
"""
**๐ด IMPORTANT SAFETY & USE DISCLAIMER ๐ด**
* This tool **DEMONSTRATES** AI capabilities. It **DOES NOT** provide medical advice or diagnosis.
* **Agentic Text Analysis:** Simulates reasoning on text input. Output is illustrative, not diagnostic.
* **Image Analysis:** Provides observations on images. Output is **NOT** a radiological interpretation.
* AI analysis lacks full clinical context, may be inaccurate, and **CANNOT** replace professional judgment.
* **ALWAYS consult qualified healthcare professionals** for diagnosis and treatment.
* **PRIVACY:** Do **NOT** upload identifiable patient information (PHI) without explicit consent and adherence to all privacy laws (e.g., HIPAA).
""",
icon="โ ๏ธ"
)
st.markdown("---")
st.sidebar.header("Analysis Options")
input_method = st.sidebar.radio(
"Select Analysis Type:",
("Agentic Text Analysis", "Medical Image Analysis"),
key="input_method_radio",
help="Choose 'Agentic Text Analysis' for reasoning simulation on clinical text, or 'Medical Image Analysis' for visual observations on images."
)
st.sidebar.markdown("---") # Visual separator
col1, col2 = st.columns(2)
with col1:
st.header("Input Data")
analysis_result = None # Initialize results variables
error_message = None
output_header = "Analysis Results" # Default header for the output column
# --- Agentic Text Analysis Input ---
if input_method == "Agentic Text Analysis":
st.subheader("Clinical Text for Agentic Analysis")
text_input = st.text_area(
"Paste de-identified clinical information (symptoms, history, findings):",
height=350, # Slightly larger text area
placeholder="Example: 68yo male, sudden SOB & pleuritic chest pain post-flight. HR 110, SpO2 92% RA. No known cardiac hx...",
key="text_input_area"
)
analyze_button = st.button("โถ๏ธ Run Agentic Text Analysis", key="analyze_text_button", type="primary")
if analyze_button:
if text_input:
with st.spinner("๐ง Simulating agentic reasoning..."):
analysis_result, error_message = run_agentic_text_analysis(text_input)
output_header = "Simulated Agentic Analysis Output"
else:
st.warning("Please enter clinical text to analyze.", icon="โ๏ธ")
# --- Medical Image Analysis Input ---
elif input_method == "Medical Image Analysis":
st.subheader("Medical Image for Analysis")
image_file = st.file_uploader(
"Upload a de-identified medical image (e.g., X-ray, CT slice). Supported: PNG, JPG, JPEG.",
type=["png", "jpg", "jpeg"],
key="image_uploader"
)
user_image_prompt = st.text_input(
"Optional: Add context or specific question for image analysis:",
placeholder="Example: 'Describe findings in the lung fields' or 'Any visible fractures?'",
key="image_prompt_input"
)
analyze_button = st.button("๐ผ๏ธ Analyze Medical Image", key="analyze_image_button", type="primary")
if analyze_button:
if image_file:
st.image(image_file, caption="Uploaded Image Preview", use_column_width=True)
with st.spinner("๐๏ธ Analyzing image..."):
analysis_result, error_message = analyze_medical_image(image_file, user_image_prompt)
output_header = "Medical Image Analysis Output"
else:
st.warning("Please upload an image file to analyze.", icon="โ๏ธ")
# --- Output Column ---
with col2:
st.header(output_header)
# Check if a button was pressed in this run (using session state keys is more robust for complex apps,
# but checking the result variables works here as they are reset on each run unless persisted).
button_pressed = st.session_state.get('analyze_text_button', False) or st.session_state.get('analyze_image_button', False)
if button_pressed: # Only show results if a button was pressed in this run cycle
if error_message:
st.error(f"Analysis Failed: {error_message}", icon="โ")
elif analysis_result:
st.markdown(analysis_result) # Display the successful result
# Removed the "unknown error" case here, as the functions should return either result or error message
else:
st.info("Analysis results will appear here after providing input and clicking the corresponding analysis button.")
# --- Sidebar Explanations ---
st.sidebar.markdown("---")
st.sidebar.header("About The Prompts")
with st.sidebar.expander("View Agentic Text Prompt Structure"):
st.markdown(f"```plaintext\n{AGENTIC_TEXT_ANALYSIS_PROMPT_TEMPLATE.split('---')[0]} ... [Input Text] ...\n```")
st.caption("Guides the AI through structured reasoning steps for text.")
with st.sidebar.expander("View Image Analysis Prompt Structure"):
st.markdown(f"```plaintext\n{IMAGE_ANALYSIS_PROMPT_TEMPLATE.split('---')[0]} ... [User Prompt] ...\n```")
st.caption("Guides the AI to describe visual features and potential anomalies in images.")
st.sidebar.markdown("---")
st.sidebar.error(
"**Ethical Use Reminder:** AI in medicine requires extreme caution. This tool is for demonstration and education, not clinical practice. Verify all information and rely on professional expertise."
)
if __name__ == "__main__":
main() |