Update app.py
Browse files
app.py
CHANGED
@@ -12,50 +12,66 @@ st.set_page_config(
|
|
12 |
initial_sidebar_state="expanded"
|
13 |
)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# --- Configuration and Initialization ---
|
16 |
|
17 |
-
# Securely load API key
|
18 |
-
# Prioritize Streamlit secrets, fall back to environment variable for flexibility
|
19 |
GEMINI_API_KEY = st.secrets.get("GEMINI_API_KEY", os.environ.get("GEMINI_API_KEY"))
|
20 |
|
21 |
-
# Configure Gemini Client
|
22 |
genai_client_configured = False
|
23 |
if GEMINI_API_KEY:
|
24 |
try:
|
25 |
genai.configure(api_key=GEMINI_API_KEY)
|
26 |
genai_client_configured = True
|
27 |
except Exception as e:
|
28 |
-
|
29 |
-
|
30 |
-
st.error(f"Fatal Error: Failed to configure Google Generative AI. Check API Key. Details: {e}")
|
31 |
-
st.stop() # Stop execution if configuration fails
|
32 |
else:
|
33 |
-
st.error("โ ๏ธ Gemini API Key not found. Please configure `GEMINI_API_KEY` in Streamlit secrets or environment variables.")
|
34 |
-
st.stop()
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
if genai_client_configured:
|
41 |
try:
|
42 |
-
text_model = genai.GenerativeModel(TEXT_MODEL_NAME)
|
43 |
-
vision_model = genai.GenerativeModel(VISION_MODEL_NAME)
|
44 |
-
|
45 |
-
#
|
|
|
46 |
except Exception as e:
|
47 |
-
st.error(f"Fatal Error: Failed to initialize Gemini models. Text: {TEXT_MODEL_NAME}, Vision: {VISION_MODEL_NAME}. Details: {e}")
|
48 |
st.stop()
|
49 |
-
|
50 |
-
#
|
51 |
-
|
52 |
-
st.error("AI Models could not be initialized due to configuration issues.")
|
53 |
st.stop()
|
54 |
|
55 |
|
56 |
# --- Core AI Interaction Functions ---
|
57 |
|
58 |
-
# AGENTIC prompt for Text Analysis
|
59 |
AGENTIC_TEXT_ANALYSIS_PROMPT_TEMPLATE = """
|
60 |
**Simulated Clinical Reasoning Agent Task:**
|
61 |
|
@@ -63,6 +79,8 @@ AGENTIC_TEXT_ANALYSIS_PROMPT_TEMPLATE = """
|
|
63 |
|
64 |
**Input Data:** Unstructured clinical information (e.g., symptoms, history, basic findings).
|
65 |
|
|
|
|
|
66 |
**Simulated Agentic Steps (Perform sequentially):**
|
67 |
|
68 |
1. **Information Extraction & Structuring:**
|
@@ -94,17 +112,21 @@ AGENTIC_TEXT_ANALYSIS_PROMPT_TEMPLATE = """
|
|
94 |
**Agentic Analysis:**
|
95 |
"""
|
96 |
|
97 |
-
#
|
98 |
IMAGE_ANALYSIS_PROMPT_TEMPLATE = """
|
99 |
**Medical Image Analysis Request:**
|
100 |
|
101 |
**Context:** Analyze the provided medical image. User may provide additional context or questions.
|
|
|
|
|
|
|
102 |
**Task:**
|
|
|
103 |
1. **Describe Visible Structures:** Briefly describe main anatomical structures.
|
104 |
-
2. **Identify Potential Anomalies:** Point out areas that *appear* abnormal or deviate from typical presentation (e.g., "potential opacity," "altered signal intensity," "possible asymmetry"). Use cautious, descriptive language.
|
105 |
-
3. **Correlate with User Prompt (if provided):** Address specific user questions based *only* on visual information.
|
106 |
-
4. **Limitations:** State that image quality, view,
|
107 |
-
5. **Disclaimer:** Explicitly state this is AI visual analysis, not radiological interpretation or diagnosis, requiring review by a qualified professional with clinical context.
|
108 |
|
109 |
**User's Additional Context/Question (if any):**
|
110 |
---
|
@@ -115,21 +137,15 @@ IMAGE_ANALYSIS_PROMPT_TEMPLATE = """
|
|
115 |
"""
|
116 |
|
117 |
def run_agentic_text_analysis(text_input: str) -> Tuple[Optional[str], Optional[str]]:
|
118 |
-
"""
|
119 |
-
Sends clinical text to the Gemini text model for simulated agentic analysis.
|
120 |
-
|
121 |
-
Args:
|
122 |
-
text_input: The clinical text provided by the user.
|
123 |
-
|
124 |
-
Returns:
|
125 |
-
Tuple: (analysis_text, error_message)
|
126 |
-
"""
|
127 |
if not text_input or not text_input.strip():
|
128 |
return None, "Input text cannot be empty."
|
|
|
|
|
|
|
129 |
try:
|
130 |
prompt = AGENTIC_TEXT_ANALYSIS_PROMPT_TEMPLATE.format(text_input=text_input)
|
131 |
-
|
132 |
-
response = text_model.generate_content(prompt)
|
133 |
|
134 |
if response.parts:
|
135 |
return response.text, None
|
@@ -143,41 +159,34 @@ def run_agentic_text_analysis(text_input: str) -> Tuple[Optional[str], Optional[
|
|
143 |
return None, "Received an empty or unexpected response from the AI model."
|
144 |
|
145 |
except Exception as e:
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
return None, f"An internal error occurred during text analysis." # Generic message to user
|
150 |
|
151 |
def analyze_medical_image(image_file: Any, user_prompt: str = "") -> Tuple[Optional[str], Optional[str]]:
|
152 |
-
"""
|
153 |
-
Sends a medical image (and optional prompt) to the Gemini Vision model for analysis.
|
154 |
-
|
155 |
-
Args:
|
156 |
-
image_file: Uploaded image file object from Streamlit.
|
157 |
-
user_prompt: Optional text context/questions from the user.
|
158 |
-
|
159 |
-
Returns:
|
160 |
-
Tuple: (analysis_text, error_message)
|
161 |
-
"""
|
162 |
if not image_file:
|
163 |
return None, "Image file cannot be empty."
|
|
|
|
|
|
|
164 |
try:
|
165 |
try:
|
166 |
image = Image.open(image_file)
|
|
|
167 |
if image.mode != 'RGB':
|
168 |
image = image.convert('RGB')
|
169 |
except Exception as img_e:
|
170 |
-
return None, f"Error opening or processing image file: {img_e}"
|
171 |
|
172 |
prompt_text = IMAGE_ANALYSIS_PROMPT_TEMPLATE.format(user_prompt=user_prompt if user_prompt else "N/A")
|
173 |
model_input = [prompt_text, image]
|
174 |
-
|
175 |
-
response = vision_model.generate_content(model_input)
|
176 |
|
177 |
if response.parts:
|
178 |
return response.text, None
|
179 |
elif response.prompt_feedback.block_reason:
|
180 |
-
return None, f"Image analysis blocked by safety filters: {response.prompt_feedback.block_reason.name}.
|
181 |
else:
|
182 |
candidate = response.candidates[0] if response.candidates else None
|
183 |
if candidate and candidate.finish_reason != "STOP":
|
@@ -186,22 +195,20 @@ def analyze_medical_image(image_file: Any, user_prompt: str = "") -> Tuple[Optio
|
|
186 |
return None, "Received an empty or unexpected response from the AI model for image analysis."
|
187 |
|
188 |
except Exception as e:
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
return None, f"An internal error occurred during image analysis." # Generic message to user
|
193 |
|
194 |
|
195 |
# --- Streamlit User Interface ---
|
196 |
|
197 |
def main():
|
198 |
-
#
|
199 |
-
|
200 |
st.title("๐ค AI Clinical Support Demonstrator")
|
201 |
-
st.caption(f"
|
202 |
-
st.markdown("---")
|
203 |
|
204 |
# --- CRITICAL DISCLAIMER ---
|
|
|
205 |
st.warning(
|
206 |
"""
|
207 |
**๐ด IMPORTANT SAFETY & USE DISCLAIMER ๐ด**
|
@@ -210,13 +217,13 @@ def main():
|
|
210 |
* **Image Analysis:** Provides observations on images. Output is **NOT** a radiological interpretation.
|
211 |
* AI analysis lacks full clinical context, may be inaccurate, and **CANNOT** replace professional judgment.
|
212 |
* **ALWAYS consult qualified healthcare professionals** for diagnosis and treatment.
|
213 |
-
* **PRIVACY:** Do **NOT** upload identifiable patient information (PHI) without explicit consent and adherence to all privacy laws (e.g., HIPAA).
|
214 |
""",
|
215 |
icon="โ ๏ธ"
|
216 |
)
|
217 |
st.markdown("---")
|
218 |
|
219 |
-
|
220 |
st.sidebar.header("Analysis Options")
|
221 |
input_method = st.sidebar.radio(
|
222 |
"Select Analysis Type:",
|
@@ -226,26 +233,31 @@ def main():
|
|
226 |
)
|
227 |
st.sidebar.markdown("---") # Visual separator
|
228 |
|
|
|
229 |
col1, col2 = st.columns(2)
|
230 |
|
|
|
|
|
|
|
|
|
|
|
231 |
with col1:
|
232 |
st.header("Input Data")
|
233 |
-
analysis_result = None # Initialize results variables
|
234 |
-
error_message = None
|
235 |
-
output_header = "Analysis Results" # Default header for the output column
|
236 |
|
237 |
-
#
|
238 |
if input_method == "Agentic Text Analysis":
|
239 |
st.subheader("Clinical Text for Agentic Analysis")
|
|
|
240 |
text_input = st.text_area(
|
241 |
-
"Paste
|
242 |
-
height=350,
|
243 |
placeholder="Example: 68yo male, sudden SOB & pleuritic chest pain post-flight. HR 110, SpO2 92% RA. No known cardiac hx...",
|
244 |
key="text_input_area"
|
245 |
)
|
246 |
-
|
|
|
247 |
|
248 |
-
if
|
249 |
if text_input:
|
250 |
with st.spinner("๐ง Simulating agentic reasoning..."):
|
251 |
analysis_result, error_message = run_agentic_text_analysis(text_input)
|
@@ -253,11 +265,11 @@ def main():
|
|
253 |
else:
|
254 |
st.warning("Please enter clinical text to analyze.", icon="โ๏ธ")
|
255 |
|
256 |
-
# --- Medical Image Analysis Input ---
|
257 |
elif input_method == "Medical Image Analysis":
|
258 |
st.subheader("Medical Image for Analysis")
|
|
|
259 |
image_file = st.file_uploader(
|
260 |
-
"
|
261 |
type=["png", "jpg", "jpeg"],
|
262 |
key="image_uploader"
|
263 |
)
|
@@ -266,60 +278,63 @@ def main():
|
|
266 |
placeholder="Example: 'Describe findings in the lung fields' or 'Any visible fractures?'",
|
267 |
key="image_prompt_input"
|
268 |
)
|
269 |
-
|
|
|
270 |
|
271 |
-
if
|
|
|
|
|
|
|
|
|
272 |
if image_file:
|
273 |
-
# Using st.image within the column context
|
274 |
-
st.image(image_file, caption="Uploaded Image Preview", use_column_width=True)
|
275 |
with st.spinner("๐๏ธ Analyzing image..."):
|
276 |
analysis_result, error_message = analyze_medical_image(image_file, user_image_prompt)
|
277 |
output_header = "Medical Image Analysis Output"
|
278 |
else:
|
279 |
st.warning("Please upload an image file to analyze.", icon="โ๏ธ")
|
280 |
|
281 |
-
# --- Output
|
282 |
with col2:
|
283 |
st.header(output_header)
|
284 |
-
|
285 |
-
#
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
if button_pressed:
|
290 |
-
|
291 |
-
# analysis_result and error_message are set within the button's if block in col1
|
292 |
-
if error_message:
|
293 |
st.error(f"Analysis Failed: {error_message}", icon="โ")
|
294 |
-
|
295 |
-
st.markdown
|
296 |
-
|
297 |
-
|
298 |
-
# else:
|
299 |
-
# st.info("Provide valid input and click Analyze.") # Fallback?
|
300 |
-
|
301 |
-
else: # No button pressed in this run
|
302 |
st.info("Analysis results will appear here after providing input and clicking the corresponding analysis button.")
|
|
|
303 |
|
304 |
|
305 |
# --- Sidebar Explanations ---
|
306 |
st.sidebar.markdown("---")
|
307 |
st.sidebar.header("About The Prompts")
|
308 |
-
with st.sidebar.expander("View Agentic Text Prompt Structure"):
|
309 |
st.markdown(f"```plaintext\n{AGENTIC_TEXT_ANALYSIS_PROMPT_TEMPLATE.split('---')[0]} ... [Input Text] ...\n```")
|
310 |
st.caption("Guides the AI through structured reasoning steps for text.")
|
311 |
-
with st.sidebar.expander("View Image Analysis Prompt Structure"):
|
312 |
st.markdown(f"```plaintext\n{IMAGE_ANALYSIS_PROMPT_TEMPLATE.split('---')[0]} ... [User Prompt] ...\n```")
|
313 |
st.caption("Guides the AI to describe visual features and potential anomalies in images.")
|
314 |
|
315 |
st.sidebar.markdown("---")
|
316 |
st.sidebar.error(
|
317 |
-
"**Ethical Use Reminder:** AI in medicine requires extreme caution. This tool is for demonstration and education, not clinical practice. Verify all information and rely on professional expertise."
|
|
|
318 |
)
|
319 |
|
320 |
# --- Main Execution Guard ---
|
321 |
if __name__ == "__main__":
|
322 |
-
#
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
|
12 |
initial_sidebar_state="expanded"
|
13 |
)
|
14 |
|
15 |
+
# --- Introductory Explanation ---
|
16 |
+
st.markdown(
|
17 |
+
"""
|
18 |
+
### Welcome to the AI Clinical Support Demonstrator
|
19 |
+
This application demonstrates how Generative AI (Google Gemini) can be guided to assist with analyzing clinical information.
|
20 |
+
- **Agentic Text Analysis:** Simulates a structured reasoning process on clinical text to identify key findings, suggest considerations, and note information gaps.
|
21 |
+
- **Medical Image Analysis:** Provides descriptive observations of potential anomalies in medical images.
|
22 |
+
|
23 |
+
**Crucially, this tool is for demonstration purposes ONLY. It does NOT provide medical advice or diagnosis.**
|
24 |
+
"""
|
25 |
+
)
|
26 |
+
st.markdown("---") # Visual separator
|
27 |
+
|
28 |
# --- Configuration and Initialization ---
|
29 |
|
30 |
+
# Securely load API key (Secrets > Env Var)
|
|
|
31 |
GEMINI_API_KEY = st.secrets.get("GEMINI_API_KEY", os.environ.get("GEMINI_API_KEY"))
|
32 |
|
33 |
+
# Configure Gemini Client
|
34 |
genai_client_configured = False
|
35 |
if GEMINI_API_KEY:
|
36 |
try:
|
37 |
genai.configure(api_key=GEMINI_API_KEY)
|
38 |
genai_client_configured = True
|
39 |
except Exception as e:
|
40 |
+
st.error(f"Fatal Error: Failed to configure Google Generative AI. Check API Key. Details: {e}", icon="๐จ")
|
41 |
+
st.stop()
|
|
|
|
|
42 |
else:
|
43 |
+
st.error("โ ๏ธ Gemini API Key not found. Please configure `GEMINI_API_KEY` in Streamlit secrets or environment variables.", icon="๐")
|
44 |
+
st.stop()
|
45 |
+
|
46 |
+
# Initialize models
|
47 |
+
TEXT_MODEL_NAME = 'gemini-1.5-pro-latest' # For agentic text reasoning
|
48 |
+
VISION_MODEL_NAME = 'gemini-1.5-flash' # For image analysis
|
49 |
|
50 |
+
# Use session state to initialize models only once
|
51 |
+
if 'models_initialized' not in st.session_state:
|
52 |
+
st.session_state.models_initialized = False
|
53 |
+
st.session_state.text_model = None
|
54 |
+
st.session_state.vision_model = None
|
55 |
|
56 |
+
if genai_client_configured and not st.session_state.models_initialized:
|
57 |
try:
|
58 |
+
st.session_state.text_model = genai.GenerativeModel(TEXT_MODEL_NAME)
|
59 |
+
st.session_state.vision_model = genai.GenerativeModel(VISION_MODEL_NAME)
|
60 |
+
st.session_state.models_initialized = True
|
61 |
+
# Display success message subtly in sidebar perhaps, or remove if too noisy
|
62 |
+
# st.sidebar.success("AI Models Ready.", icon="โ
")
|
63 |
except Exception as e:
|
64 |
+
st.error(f"Fatal Error: Failed to initialize Gemini models. Text: {TEXT_MODEL_NAME}, Vision: {VISION_MODEL_NAME}. Details: {e}", icon="๐ฅ")
|
65 |
st.stop()
|
66 |
+
elif not genai_client_configured:
|
67 |
+
# Should have stopped already, but defensive check
|
68 |
+
st.error("AI Models could not be initialized due to configuration issues.", icon="๐ซ")
|
|
|
69 |
st.stop()
|
70 |
|
71 |
|
72 |
# --- Core AI Interaction Functions ---
|
73 |
|
74 |
+
# Refined AGENTIC prompt for Text Analysis with formatting request
|
75 |
AGENTIC_TEXT_ANALYSIS_PROMPT_TEMPLATE = """
|
76 |
**Simulated Clinical Reasoning Agent Task:**
|
77 |
|
|
|
79 |
|
80 |
**Input Data:** Unstructured clinical information (e.g., symptoms, history, basic findings).
|
81 |
|
82 |
+
**Output Format:** Please structure your response using Markdown headings for each step (e.g., `## 1. Information Extraction`).
|
83 |
+
|
84 |
**Simulated Agentic Steps (Perform sequentially):**
|
85 |
|
86 |
1. **Information Extraction & Structuring:**
|
|
|
112 |
**Agentic Analysis:**
|
113 |
"""
|
114 |
|
115 |
+
# Refined prompt for Image Analysis with formatting request
|
116 |
IMAGE_ANALYSIS_PROMPT_TEMPLATE = """
|
117 |
**Medical Image Analysis Request:**
|
118 |
|
119 |
**Context:** Analyze the provided medical image. User may provide additional context or questions.
|
120 |
+
|
121 |
+
**Output Format:** Please structure your response using Markdown headings for each step (e.g., `## 1. Visible Structures`).
|
122 |
+
|
123 |
**Task:**
|
124 |
+
|
125 |
1. **Describe Visible Structures:** Briefly describe main anatomical structures.
|
126 |
+
2. **Identify Potential Anomalies:** Point out areas that *appear* abnormal or deviate from typical presentation (e.g., "potential opacity," "altered signal intensity," "possible asymmetry"). Use cautious, descriptive language. **This is not a definitive finding.**
|
127 |
+
3. **Correlate with User Prompt (if provided):** Address specific user questions based *only* on visual information. State if the image cannot answer the question.
|
128 |
+
4. **Limitations:** State that image quality, view, lack of clinical context, and the AI's nature limit analysis.
|
129 |
+
5. **Mandatory Disclaimer:** Explicitly state this is AI visual analysis, not radiological interpretation or diagnosis, requiring review by a qualified professional with clinical context.
|
130 |
|
131 |
**User's Additional Context/Question (if any):**
|
132 |
---
|
|
|
137 |
"""
|
138 |
|
139 |
def run_agentic_text_analysis(text_input: str) -> Tuple[Optional[str], Optional[str]]:
|
140 |
+
"""Sends clinical text to the configured text model for simulated agentic analysis."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
if not text_input or not text_input.strip():
|
142 |
return None, "Input text cannot be empty."
|
143 |
+
if not st.session_state.models_initialized or not st.session_state.text_model:
|
144 |
+
return None, "Text analysis model not initialized."
|
145 |
+
|
146 |
try:
|
147 |
prompt = AGENTIC_TEXT_ANALYSIS_PROMPT_TEMPLATE.format(text_input=text_input)
|
148 |
+
response = st.session_state.text_model.generate_content(prompt)
|
|
|
149 |
|
150 |
if response.parts:
|
151 |
return response.text, None
|
|
|
159 |
return None, "Received an empty or unexpected response from the AI model."
|
160 |
|
161 |
except Exception as e:
|
162 |
+
print(f"ERROR in run_agentic_text_analysis: {e}") # Basic server-side log
|
163 |
+
st.error("An error occurred during text analysis.", icon="๐จ") # User-facing error
|
164 |
+
return None, "An internal error occurred during text analysis. Please try again later."
|
|
|
165 |
|
166 |
def analyze_medical_image(image_file: Any, user_prompt: str = "") -> Tuple[Optional[str], Optional[str]]:
|
167 |
+
"""Sends a medical image to the configured vision model for analysis."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
if not image_file:
|
169 |
return None, "Image file cannot be empty."
|
170 |
+
if not st.session_state.models_initialized or not st.session_state.vision_model:
|
171 |
+
return None, "Image analysis model not initialized."
|
172 |
+
|
173 |
try:
|
174 |
try:
|
175 |
image = Image.open(image_file)
|
176 |
+
# Convert to RGB ensure compatibility, common requirement for vision models
|
177 |
if image.mode != 'RGB':
|
178 |
image = image.convert('RGB')
|
179 |
except Exception as img_e:
|
180 |
+
return None, f"Error opening or processing the uploaded image file: {img_e}"
|
181 |
|
182 |
prompt_text = IMAGE_ANALYSIS_PROMPT_TEMPLATE.format(user_prompt=user_prompt if user_prompt else "N/A")
|
183 |
model_input = [prompt_text, image]
|
184 |
+
response = st.session_state.vision_model.generate_content(model_input)
|
|
|
185 |
|
186 |
if response.parts:
|
187 |
return response.text, None
|
188 |
elif response.prompt_feedback.block_reason:
|
189 |
+
return None, f"Image analysis blocked by safety filters: {response.prompt_feedback.block_reason.name}. This may relate to sensitive content policies."
|
190 |
else:
|
191 |
candidate = response.candidates[0] if response.candidates else None
|
192 |
if candidate and candidate.finish_reason != "STOP":
|
|
|
195 |
return None, "Received an empty or unexpected response from the AI model for image analysis."
|
196 |
|
197 |
except Exception as e:
|
198 |
+
print(f"ERROR in analyze_medical_image: {e}") # Basic server-side log
|
199 |
+
st.error("An error occurred during image analysis.", icon="๐ผ๏ธ") # User-facing error
|
200 |
+
return None, "An internal error occurred during image analysis. Please try again later."
|
|
|
201 |
|
202 |
|
203 |
# --- Streamlit User Interface ---
|
204 |
|
205 |
def main():
|
206 |
+
# Page title and model info
|
|
|
207 |
st.title("๐ค AI Clinical Support Demonstrator")
|
208 |
+
st.caption(f"Utilizing: Text Model ({TEXT_MODEL_NAME}), Vision Model ({VISION_MODEL_NAME})")
|
|
|
209 |
|
210 |
# --- CRITICAL DISCLAIMER ---
|
211 |
+
# Positioned prominently after title/intro
|
212 |
st.warning(
|
213 |
"""
|
214 |
**๐ด IMPORTANT SAFETY & USE DISCLAIMER ๐ด**
|
|
|
217 |
* **Image Analysis:** Provides observations on images. Output is **NOT** a radiological interpretation.
|
218 |
* AI analysis lacks full clinical context, may be inaccurate, and **CANNOT** replace professional judgment.
|
219 |
* **ALWAYS consult qualified healthcare professionals** for diagnosis and treatment.
|
220 |
+
* **PRIVACY:** Do **NOT** upload identifiable patient information (PHI) without explicit consent and adherence to all privacy laws (e.g., HIPAA). You are responsible for the data you input.
|
221 |
""",
|
222 |
icon="โ ๏ธ"
|
223 |
)
|
224 |
st.markdown("---")
|
225 |
|
226 |
+
# --- Sidebar Controls ---
|
227 |
st.sidebar.header("Analysis Options")
|
228 |
input_method = st.sidebar.radio(
|
229 |
"Select Analysis Type:",
|
|
|
233 |
)
|
234 |
st.sidebar.markdown("---") # Visual separator
|
235 |
|
236 |
+
# --- Main Area Layout (Input and Output Columns) ---
|
237 |
col1, col2 = st.columns(2)
|
238 |
|
239 |
+
analysis_result = None # Initialize results variables for this run
|
240 |
+
error_message = None
|
241 |
+
output_header = "Analysis Results" # Default header
|
242 |
+
|
243 |
+
# --- Column 1: Input Area ---
|
244 |
with col1:
|
245 |
st.header("Input Data")
|
|
|
|
|
|
|
246 |
|
247 |
+
# Conditional Input UI based on selection
|
248 |
if input_method == "Agentic Text Analysis":
|
249 |
st.subheader("Clinical Text for Agentic Analysis")
|
250 |
+
st.caption("Please ensure data is de-identified before pasting.")
|
251 |
text_input = st.text_area(
|
252 |
+
"Paste clinical information:",
|
253 |
+
height=350,
|
254 |
placeholder="Example: 68yo male, sudden SOB & pleuritic chest pain post-flight. HR 110, SpO2 92% RA. No known cardiac hx...",
|
255 |
key="text_input_area"
|
256 |
)
|
257 |
+
analyze_button_key = "analyze_text_button"
|
258 |
+
analyze_button_label = "โถ๏ธ Run Agentic Text Analysis"
|
259 |
|
260 |
+
if st.button(analyze_button_label, key=analyze_button_key, type="primary"):
|
261 |
if text_input:
|
262 |
with st.spinner("๐ง Simulating agentic reasoning..."):
|
263 |
analysis_result, error_message = run_agentic_text_analysis(text_input)
|
|
|
265 |
else:
|
266 |
st.warning("Please enter clinical text to analyze.", icon="โ๏ธ")
|
267 |
|
|
|
268 |
elif input_method == "Medical Image Analysis":
|
269 |
st.subheader("Medical Image for Analysis")
|
270 |
+
st.caption("Upload a de-identified medical image (PNG, JPG, JPEG).")
|
271 |
image_file = st.file_uploader(
|
272 |
+
"Choose an image file:",
|
273 |
type=["png", "jpg", "jpeg"],
|
274 |
key="image_uploader"
|
275 |
)
|
|
|
278 |
placeholder="Example: 'Describe findings in the lung fields' or 'Any visible fractures?'",
|
279 |
key="image_prompt_input"
|
280 |
)
|
281 |
+
analyze_button_key = "analyze_image_button"
|
282 |
+
analyze_button_label = "๐ผ๏ธ Analyze Medical Image"
|
283 |
|
284 |
+
if image_file:
|
285 |
+
# Display preview immediately after upload inside the input column
|
286 |
+
st.image(image_file, caption="Uploaded Image Preview", use_column_width=True)
|
287 |
+
|
288 |
+
if st.button(analyze_button_label, key=analyze_button_key, type="primary"):
|
289 |
if image_file:
|
|
|
|
|
290 |
with st.spinner("๐๏ธ Analyzing image..."):
|
291 |
analysis_result, error_message = analyze_medical_image(image_file, user_image_prompt)
|
292 |
output_header = "Medical Image Analysis Output"
|
293 |
else:
|
294 |
st.warning("Please upload an image file to analyze.", icon="โ๏ธ")
|
295 |
|
296 |
+
# --- Column 2: Output Area ---
|
297 |
with col2:
|
298 |
st.header(output_header)
|
299 |
+
|
300 |
+
# Display results or errors if an analysis was attempted
|
301 |
+
# Check if button was pressed and corresponding result/error exists
|
302 |
+
button_pressed = st.session_state.get(analyze_button_key, False) if 'analyze_button_key' in locals() else False
|
303 |
+
|
304 |
+
if button_pressed and (analysis_result or error_message):
|
305 |
+
if error_message:
|
|
|
|
|
306 |
st.error(f"Analysis Failed: {error_message}", icon="โ")
|
307 |
+
elif analysis_result:
|
308 |
+
# Use st.markdown to render potential formatting from AI
|
309 |
+
st.markdown(analysis_result)
|
310 |
+
elif not button_pressed :
|
|
|
|
|
|
|
|
|
311 |
st.info("Analysis results will appear here after providing input and clicking the corresponding analysis button.")
|
312 |
+
# Add a condition for button pressed but no input provided (already handled by st.warning in col1)
|
313 |
|
314 |
|
315 |
# --- Sidebar Explanations ---
|
316 |
st.sidebar.markdown("---")
|
317 |
st.sidebar.header("About The Prompts")
|
318 |
+
with st.sidebar.expander("View Agentic Text Prompt Structure", icon="๐"):
|
319 |
st.markdown(f"```plaintext\n{AGENTIC_TEXT_ANALYSIS_PROMPT_TEMPLATE.split('---')[0]} ... [Input Text] ...\n```")
|
320 |
st.caption("Guides the AI through structured reasoning steps for text.")
|
321 |
+
with st.sidebar.expander("View Image Analysis Prompt Structure", icon="๐ผ๏ธ"):
|
322 |
st.markdown(f"```plaintext\n{IMAGE_ANALYSIS_PROMPT_TEMPLATE.split('---')[0]} ... [User Prompt] ...\n```")
|
323 |
st.caption("Guides the AI to describe visual features and potential anomalies in images.")
|
324 |
|
325 |
st.sidebar.markdown("---")
|
326 |
st.sidebar.error(
|
327 |
+
"**Ethical Use Reminder:** AI in medicine requires extreme caution. This tool is for demonstration and education, not clinical practice. Verify all information and rely on professional expertise.",
|
328 |
+
icon = "โ๏ธ"
|
329 |
)
|
330 |
|
331 |
# --- Main Execution Guard ---
|
332 |
if __name__ == "__main__":
|
333 |
+
# Check if models are initialized before running the main UI components
|
334 |
+
if st.session_state.models_initialized:
|
335 |
+
main()
|
336 |
+
else:
|
337 |
+
# If models failed to initialize, errors would have been shown already.
|
338 |
+
# We might add a placeholder or further message here if needed.
|
339 |
+
st.info("Waiting for model initialization...") # Or check specific errors if needed
|
340 |
+
# The script might stop earlier if initialization fails critically.
|