Spaces:
Sleeping
Sleeping
Update modules/orchestrator.py
Browse files- modules/orchestrator.py +145 -92
modules/orchestrator.py
CHANGED
@@ -1,108 +1,161 @@
|
|
1 |
-
# modules/
|
2 |
"""
|
3 |
-
Central
|
4 |
-
This is the
|
5 |
-
|
|
|
|
|
6 |
"""
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
15 |
)
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
def get_query_correction_prompt(user_text: str) -> str:
|
20 |
-
return f"""
|
21 |
-
You are an expert medical transcriptionist. Your task is to correct and clarify the following user query for a medical database search.
|
22 |
-
- Correct all spelling and grammatical errors.
|
23 |
-
- Translate colloquialisms or typos into proper medical terminology (e.g., "pin" -> "pain", "abdomian" -> "abdomen").
|
24 |
-
- Rephrase as a clear statement or question.
|
25 |
-
- Do not answer the question. Only return the corrected and clarified query.
|
26 |
-
User Query: "{user_text}"
|
27 |
-
Response:
|
28 |
"""
|
29 |
-
|
30 |
-
|
31 |
-
def get_term_extraction_prompt(user_text: str) -> str:
|
32 |
-
return f"""
|
33 |
-
From the user's corrected query below, extract the most relevant medical concepts, symptoms, or conditions.
|
34 |
-
Return ONLY a Python-style list of strings.
|
35 |
-
User Text: "{user_text}"
|
36 |
-
Response:
|
37 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
# ==============================================================================
|
41 |
-
#
|
|
|
42 |
# ==============================================================================
|
43 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
vision_section = f"## Analysis of Uploaded Image\n{vision_analysis}" if vision_analysis else ""
|
48 |
-
# ==============================================================================
|
49 |
-
|
50 |
-
return f"""
|
51 |
-
You are Asclepius, an expert medical information analyst. Your task is to transform raw medical data into a coherent, insightful, and beautifully formatted narrative report for a user.
|
52 |
-
|
53 |
-
**YOUR DIRECTIVES:**
|
54 |
-
1. **START IMMEDIATELY with the provided mandatory disclaimer.** DO NOT add any other preamble, introduction, or disclaimer of your own. Your response must begin with "⚠️ IMPORTANT DISCLAIMER...".
|
55 |
-
2. **WRITE A NARRATIVE, NOT A LIST.** Do not use "1.", "2.", "3." to structure the main report. Use Markdown headings (##) for each section.
|
56 |
-
3. **SYNTHESIZE, DON'T JUST LIST.** For each section, provide a short introductory sentence that gives context, then present the data.
|
57 |
-
4. **BE HELPFUL WHEN DATA IS EMPTY.** If a data source is empty, state that no specific data was found and then provide a brief, high-level overview of the concept from your general knowledge.
|
58 |
-
|
59 |
-
**REPORT STRUCTURE:**
|
60 |
-
|
61 |
-
## Overview
|
62 |
-
(Start with a short, empathetic paragraph acknowledging the user's query about "{user_query}" and explaining that you have searched public health databases for information on the interpreted concepts: {concepts}.)
|
63 |
-
|
64 |
-
## Insights from Medical Research
|
65 |
-
(Introduce this section by explaining you've looked for recent review articles on PubMed. Then, summarize the findings or state that none were found and give a general overview.)
|
66 |
-
{pubmed_data if pubmed_data else "No specific review articles were found on PubMed for this query."}
|
67 |
-
|
68 |
-
## Current Clinical Trials
|
69 |
-
(Introduce this section by explaining these are active studies from ClinicalTrials.gov. Then, list the trials or state that none were found.)
|
70 |
-
{trials_data if trials_data else "No actively recruiting clinical trials were found matching this query."}
|
71 |
-
|
72 |
-
## Related Drug & Safety Data
|
73 |
-
(Introduce this section by explaining this data comes from OpenFDA. Then, list the findings or state that none were found.)
|
74 |
-
{fda_data if fda_data else "No specific adverse event data was found for this query."}
|
75 |
-
|
76 |
-
{vision_section}
|
77 |
-
|
78 |
-
**Begin your report now. Adhere strictly to these directives.**
|
79 |
-
"""
|
80 |
|
81 |
|
82 |
# ==============================================================================
|
83 |
-
#
|
|
|
84 |
# ==============================================================================
|
85 |
-
def
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
(
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modules/orchestrator.py
|
2 |
"""
|
3 |
+
The Central Nervous System of Project Asclepius.
|
4 |
+
This module is the master conductor, orchestrating high-performance, asynchronous
|
5 |
+
workflows for each of the application's features. It intelligently sequences
|
6 |
+
calls to API clients and the Gemini handler to transform user queries into
|
7 |
+
comprehensive, synthesized reports. (v1.2)
|
8 |
"""
|
9 |
|
10 |
+
import asyncio
|
11 |
+
import aiohttp
|
12 |
+
from itertools import chain
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
# Import all our specialized tools
|
16 |
+
from . import gemini_handler, prompts, utils
|
17 |
+
from api_clients import (
|
18 |
+
pubmed_client,
|
19 |
+
clinicaltrials_client,
|
20 |
+
openfda_client,
|
21 |
+
rxnorm_client
|
22 |
)
|
23 |
|
24 |
+
# --- Internal Helper for Data Formatting ---
|
25 |
+
def _format_api_data_for_prompt(api_results: dict) -> dict[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"""
|
27 |
+
Takes the raw dictionary of API results and formats each entry into a
|
28 |
+
clean, readable string suitable for injection into a Gemini prompt.
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"""
|
30 |
+
formatted_strings = {}
|
31 |
+
|
32 |
+
# Format PubMed data
|
33 |
+
pubmed_data = api_results.get('pubmed', [])
|
34 |
+
if isinstance(pubmed_data, list) and pubmed_data:
|
35 |
+
lines = [f"- Title: {a.get('title', 'N/A')} (Journal: {a.get('journal', 'N/A')}, URL: {a.get('url')})" for a in pubmed_data]
|
36 |
+
formatted_strings['pubmed'] = "\n".join(lines)
|
37 |
+
else:
|
38 |
+
formatted_strings['pubmed'] = "No relevant review articles were found on PubMed for this query."
|
39 |
+
|
40 |
+
# Format Clinical Trials data
|
41 |
+
trials_data = api_results.get('trials', [])
|
42 |
+
if isinstance(trials_data, list) and trials_data:
|
43 |
+
lines = [f"- Title: {t.get('title', 'N/A')} (Status: {t.get('status', 'N/A')}, URL: {t.get('url')})" for t in trials_data]
|
44 |
+
formatted_strings['trials'] = "\n".join(lines)
|
45 |
+
else:
|
46 |
+
formatted_strings['trials'] = "No actively recruiting clinical trials were found matching this query."
|
47 |
+
|
48 |
+
# Format OpenFDA Adverse Events data
|
49 |
+
fda_data = api_results.get('openfda', [])
|
50 |
+
if isinstance(fda_data, list):
|
51 |
+
all_events = list(chain.from_iterable(filter(None, fda_data)))
|
52 |
+
if all_events:
|
53 |
+
lines = [f"- {evt['term']} (Reported {evt['count']} times)" for evt in all_events]
|
54 |
+
formatted_strings['openfda'] = "\n".join(lines)
|
55 |
+
else:
|
56 |
+
formatted_strings['openfda'] = "No specific adverse event data was found for this query."
|
57 |
+
else:
|
58 |
+
formatted_strings['openfda'] = "No specific adverse event data was found for this query."
|
59 |
+
|
60 |
+
# Format Vision analysis
|
61 |
+
vision_data = api_results.get('vision', "")
|
62 |
+
if isinstance(vision_data, str) and vision_data:
|
63 |
+
formatted_strings['vision'] = vision_data
|
64 |
+
elif isinstance(vision_data, Exception):
|
65 |
+
formatted_strings['vision'] = f"An error occurred during image analysis: {vision_data}"
|
66 |
+
else:
|
67 |
+
formatted_strings['vision'] = ""
|
68 |
+
|
69 |
+
return formatted_strings
|
70 |
|
71 |
|
72 |
# ==============================================================================
|
73 |
+
# THIS IS THE FUNCTION THAT WAS REPORTED AS MISSING. PLEASE ENSURE IT EXISTS.
|
74 |
+
# --- FEATURE 1: Symptom Synthesizer Pipeline (v1.2) ---
|
75 |
# ==============================================================================
|
76 |
+
async def run_symptom_synthesis(user_query: str, image_input: Image.Image | None) -> str:
|
77 |
+
"""The complete, asynchronous pipeline for the Symptom Synthesizer tab."""
|
78 |
+
if not user_query:
|
79 |
+
return "Please enter a symptom description or a medical question to begin."
|
80 |
+
|
81 |
+
# STEP 1: AI-Powered Query Correction
|
82 |
+
correction_prompt = prompts.get_query_correction_prompt(user_query)
|
83 |
+
corrected_query = await gemini_handler.generate_text_response(correction_prompt)
|
84 |
+
if not corrected_query:
|
85 |
+
corrected_query = user_query
|
86 |
+
|
87 |
+
# STEP 2: AI-Powered Concept Extraction
|
88 |
+
term_prompt = prompts.get_term_extraction_prompt(corrected_query)
|
89 |
+
concepts_str = await gemini_handler.generate_text_response(term_prompt)
|
90 |
+
concepts = utils.safe_literal_eval(concepts_str)
|
91 |
+
if not isinstance(concepts, list) or not concepts:
|
92 |
+
concepts = [corrected_query]
|
93 |
+
|
94 |
+
search_query = " OR ".join(f'"{c}"' for c in concepts)
|
95 |
+
|
96 |
+
# STEP 3: Massively Parallel Evidence Gathering
|
97 |
+
async with aiohttp.ClientSession() as session:
|
98 |
+
tasks = {
|
99 |
+
"pubmed": pubmed_client.search_pubmed(session, search_query, max_results=3),
|
100 |
+
"trials": clinicaltrials_client.find_trials(session, search_query, max_results=3),
|
101 |
+
"openfda": asyncio.gather(*(openfda_client.get_adverse_events(session, c, top_n=3) for c in concepts)),
|
102 |
+
}
|
103 |
+
if image_input:
|
104 |
+
tasks["vision"] = gemini_handler.analyze_image_with_text(
|
105 |
+
"In the context of the user query, analyze this image objectively. Describe visual features. Do not diagnose.", image_input
|
106 |
+
)
|
107 |
+
raw_results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
108 |
+
api_data = dict(zip(tasks.keys(), raw_results))
|
109 |
+
|
110 |
+
# STEP 4: Data Formatting
|
111 |
+
formatted_data = _format_api_data_for_prompt(api_data)
|
112 |
+
|
113 |
+
# STEP 5: The Grand Synthesis
|
114 |
+
synthesis_prompt = prompts.get_synthesis_prompt(
|
115 |
+
user_query=user_query,
|
116 |
+
concepts=concepts,
|
117 |
+
pubmed_data=formatted_data['pubmed'],
|
118 |
+
trials_data=formatted_data['trials'],
|
119 |
+
fda_data=formatted_data['openfda'],
|
120 |
+
vision_analysis=formatted_data['vision']
|
121 |
+
)
|
122 |
+
final_report = await gemini_handler.generate_text_response(synthesis_prompt)
|
123 |
|
124 |
+
# STEP 6: Final Delivery
|
125 |
+
return f"{prompts.DISCLAIMER}\n\n{final_report}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
|
128 |
# ==============================================================================
|
129 |
+
# THIS FUNCTION IS ALSO REQUIRED BY APP.PY. PLEASE ENSURE IT EXISTS.
|
130 |
+
# --- FEATURE 2: Drug Interaction & Safety Analyzer Pipeline ---
|
131 |
# ==============================================================================
|
132 |
+
async def run_drug_interaction_analysis(drug_list_str: str) -> str:
|
133 |
+
"""The complete, asynchronous pipeline for the Drug Interaction Analyzer tab."""
|
134 |
+
if not drug_list_str:
|
135 |
+
return "Please enter a comma-separated list of medications."
|
136 |
+
drug_names = [name.strip() for name in drug_list_str.split(',') if name.strip()]
|
137 |
+
if len(drug_names) < 2:
|
138 |
+
return "Please enter at least two medications to check for interactions."
|
139 |
+
async with aiohttp.ClientSession() as session:
|
140 |
+
tasks = {
|
141 |
+
"interactions": rxnorm_client.run_interaction_check(drug_names),
|
142 |
+
"safety_profiles": asyncio.gather(*(openfda_client.get_safety_profile(session, name) for name in drug_names))
|
143 |
+
}
|
144 |
+
raw_results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
145 |
+
api_data = dict(zip(tasks.keys(), raw_results))
|
146 |
+
interaction_data = api_data.get('interactions', [])
|
147 |
+
if isinstance(interaction_data, Exception):
|
148 |
+
interaction_data = [{"error": str(interaction_data)}]
|
149 |
+
safety_profiles = api_data.get('safety_profiles', [])
|
150 |
+
if isinstance(safety_profiles, Exception):
|
151 |
+
safety_profiles = [{"error": str(safety_profiles)}]
|
152 |
+
safety_data_dict = dict(zip(drug_names, safety_profiles))
|
153 |
+
interaction_formatted = utils.format_list_as_markdown([str(i) for i in interaction_data]) if interaction_data else "No interactions found."
|
154 |
+
safety_formatted = "\n".join([f"Profile for {drug}: {profile}" for drug, profile in safety_data_dict.items()])
|
155 |
+
synthesis_prompt = prompts.get_drug_interaction_synthesis_prompt(
|
156 |
+
drug_names=drug_names,
|
157 |
+
interaction_data=interaction_formatted,
|
158 |
+
safety_data=safety_formatted
|
159 |
+
)
|
160 |
+
final_report = await gemini_handler.generate_text_response(synthesis_prompt)
|
161 |
+
return f"{prompts.DISCLAIMER}\n\n{final_report}"
|