File size: 7,956 Bytes
7ef2f88
 
 
 
 
 
aecd4d7
7ef2f88
aecd4d7
7ef2f88
 
 
aecd4d7
 
8db524f
 
7ef2f88
 
8db524f
 
 
 
 
 
7ef2f88
 
8db524f
 
 
 
 
 
 
 
 
 
 
aecd4d7
 
 
 
 
 
 
 
 
 
8db524f
 
 
 
 
 
 
 
 
 
7ef2f88
8db524f
7ef2f88
 
8db524f
 
aecd4d7
8db524f
 
 
 
 
 
 
 
aecd4d7
8db524f
 
 
aecd4d7
8db524f
 
 
 
 
 
 
 
7ef2f88
 
8db524f
aecd4d7
8db524f
7ef2f88
aecd4d7
8db524f
aecd4d7
 
 
7ef2f88
 
aecd4d7
7ef2f88
aecd4d7
 
7ef2f88
 
8db524f
aecd4d7
 
7ef2f88
 
 
 
 
 
 
 
aecd4d7
8db524f
aecd4d7
8db524f
 
 
 
 
 
 
aecd4d7
7ef2f88
 
8db524f
7ef2f88
aecd4d7
7ef2f88
aecd4d7
 
7ef2f88
aecd4d7
 
7ef2f88
aecd4d7
8db524f
 
7ef2f88
aecd4d7
 
7ef2f88
aecd4d7
8db524f
aecd4d7
8db524f
7ef2f88
aecd4d7
 
8db524f
 
 
aecd4d7
8db524f
aecd4d7
 
7ef2f88
aecd4d7
8db524f
aecd4d7
8db524f
 
7ef2f88
aecd4d7
8db524f
7ef2f88
 
aecd4d7
7ef2f88
aecd4d7
8db524f
 
7ef2f88
8db524f
 
aecd4d7
8db524f
 
aecd4d7
8db524f
 
 
aecd4d7
 
8db524f
aecd4d7
8db524f
aecd4d7
 
 
 
8db524f
aecd4d7
8db524f
 
aecd4d7
 
7ef2f88
aecd4d7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import requests
import streamlit as st
import logging
from PIL import Image
import base64
import io
from typing import Optional, Tuple, Dict, Any

# Configure logger (assumed to be set up globally in your app)
logger = logging.getLogger(__name__)

# --- Constants ---
HF_VQA_MODEL_ID: str = "llava-hf/llava-1.5-7b-hf"  # Example model supporting VQA via the Hugging Face Inference API
HF_API_TIMEOUT: int = 60  # API request timeout in seconds

# --- Helper Functions ---

def get_hf_api_token() -> Optional[str]:
    """
    Retrieves the Hugging Face API Token securely from Streamlit secrets.

    Returns:
        The API token string if found, otherwise None.
    """
    try:
        token = st.secrets.get("HF_API_TOKEN")
        if token:
            logger.debug("Hugging Face API Token retrieved successfully from secrets.")
            return token
        else:
            logger.warning("HF_API_TOKEN not found in Streamlit secrets.")
            return None
    except Exception as e:
        logger.error(f"Error accessing Streamlit secrets for HF API Token: {e}", exc_info=True)
        return None

def _crop_image_to_roi(image: Image.Image, roi: Dict[str, int]) -> Optional[Image.Image]:
    """
    Crops a PIL Image to the specified ROI.

    Args:
        image: The PIL Image object.
        roi: A dictionary with keys 'left', 'top', 'width', and 'height'.

    Returns:
        A cropped Image if successful, or None if cropping fails.
    """
    try:
        x0, y0 = int(roi['left']), int(roi['top'])
        x1, y1 = x0 + int(roi['width']), y0 + int(roi['height'])
        box = (x0, y0, x1, y1)
        cropped_img = image.crop(box)
        logger.debug(f"Cropped image to ROI box: {box}")
        return cropped_img
    except KeyError as e:
        logger.error(f"ROI dictionary is missing required key: {e}")
        return None
    except Exception as e:
        logger.error(f"Failed to crop image to ROI ({roi}): {e}", exc_info=True)
        return None

def _image_to_base64(image: Image.Image) -> str:
    """
    Converts a PIL Image object to a base64 encoded PNG string.

    Args:
        image: The PIL Image object.

    Returns:
        The base64 encoded string representation of the image.

    Raises:
        Exception: If the image encoding fails.
    """
    try:
        buffered = io.BytesIO()
        image.save(buffered, format="PNG")
        img_byte = buffered.getvalue()
        base64_str = base64.b64encode(img_byte).decode("utf-8")
        logger.debug(f"Image successfully encoded to base64 string ({len(base64_str)} chars).")
        return base64_str
    except Exception as e:
        logger.error(f"Error during image to base64 conversion: {e}", exc_info=True)
        raise Exception(f"Failed to process image for API request: {e}")

def query_hf_vqa_inference_api(
    image: Image.Image,
    question: str,
    roi: Optional[Dict[str, int]] = None
) -> Tuple[str, bool]:
    """
    Queries the Hugging Face VQA model via the Inference API.

    This function handles API token retrieval, optional ROI cropping,
    image encoding, payload construction (model-specific), API call,
    and response parsing.

    Args:
        image: The PIL Image object to analyze.
        question: The question to ask about the image.
        roi: An optional dictionary specifying the region of interest.
             Expected keys: 'left', 'top', 'width', 'height'.

    Returns:
        A tuple containing:
            - A string with the generated answer or an error message.
            - A boolean indicating success (True) or failure (False).
    """
    hf_api_token = get_hf_api_token()
    if not hf_api_token:
        return "[Fallback Unavailable] Hugging Face API Token not configured.", False

    api_url = f"https://api-inference.huggingface.co/models/{HF_VQA_MODEL_ID}"
    headers = {"Authorization": f"Bearer {hf_api_token}"}

    logger.info(f"Preparing HF VQA query. Model: {HF_VQA_MODEL_ID}, Using ROI: {bool(roi)}")

    # --- Prepare Image: Apply ROI if provided ---
    image_to_send = image
    if roi:
        cropped_image = _crop_image_to_roi(image, roi)
        if cropped_image:
            image_to_send = cropped_image
            logger.info("Using ROI-cropped image for HF VQA query.")
        else:
            logger.warning("ROI cropping failed; proceeding with full image.")

    try:
        img_base64 = _image_to_base64(image_to_send)
    except Exception as e:
        return f"[Fallback Error] {e}", False

    # --- Construct Payload ---
    # Adjust the payload structure as required by the specific model.
    payload = {
        "inputs": f"USER: <image>\n{question}\nASSISTANT:",
        "parameters": {"max_new_tokens": 250}
    }
    logger.debug(f"Payload prepared with keys: {list(payload.keys())}")

    # --- Make API Call ---
    try:
        response = requests.post(api_url, headers=headers, json=payload, timeout=HF_API_TIMEOUT)
        response.raise_for_status()
        response_data = response.json()
        logger.debug(f"HF VQA API response: {response_data}")

        # --- Parse Response ---
        parsed_answer: Optional[str] = None

        # Example parsing for LLaVA-style responses:
        if isinstance(response_data, list) and response_data and "generated_text" in response_data[0]:
            full_text = response_data[0]["generated_text"]
            assistant_marker = "ASSISTANT:"
            if assistant_marker in full_text:
                parsed_answer = full_text.split(assistant_marker, 1)[-1].strip()
            else:
                parsed_answer = full_text.strip()
        # Example parsing for BLIP-style responses:
        elif isinstance(response_data, dict) and "answer" in response_data:
            parsed_answer = response_data["answer"]

        if parsed_answer and parsed_answer.strip():
            logger.info(f"Successfully parsed answer from HF VQA ({HF_VQA_MODEL_ID}).")
            return parsed_answer.strip(), True
        else:
            logger.warning(f"Response received but no valid answer parsed. Response: {response_data}")
            return "[Fallback Error] Could not parse a valid answer from the model's response.", False

    except requests.exceptions.Timeout:
        error_msg = f"Request to HF VQA API timed out after {HF_API_TIMEOUT} seconds."
        logger.error(error_msg)
        return "[Fallback Error] Request timed out.", False
    except requests.exceptions.HTTPError as e:
        status_code = e.response.status_code
        error_detail = ""
        try:
            error_detail = e.response.json().get('error', e.response.text)
        except Exception:
            error_detail = e.response.text

        log_message = f"HTTP Error ({status_code}) for {api_url}. Details: {error_detail}"
        user_message = f"[Fallback Error] API request failed (Status: {status_code})."

        if status_code == 401:
            user_message += " Check HF API Token configuration."
            logger.error(log_message, exc_info=False)
        elif status_code == 404:
            user_message += f" Verify that Model ID '{HF_VQA_MODEL_ID}' is correct."
            logger.error(log_message, exc_info=False)
        elif status_code == 503:
            user_message += " The model may be loading; please try again later."
            logger.warning(log_message, exc_info=False)
        else:
            user_message += " Please check logs for details."
            logger.error(log_message, exc_info=True)
        return user_message, False
    except requests.exceptions.RequestException as e:
        logger.error(f"Network error during HF API request: {e}", exc_info=True)
        return "[Fallback Error] Network error occurred while contacting the API.", False
    except Exception as e:
        logger.error(f"Unexpected error during HF VQA query: {e}", exc_info=True)
        return "[Fallback Error] An unexpected error occurred during processing.", False