Spaces:
Running
Running
Update dicom_utils.py
Browse files- dicom_utils.py +158 -192
dicom_utils.py
CHANGED
@@ -2,46 +2,57 @@ import pydicom
|
|
2 |
import pydicom.errors
|
3 |
from pydicom.pixel_data_handlers.util import apply_voi_lut
|
4 |
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
import io
|
7 |
import logging
|
8 |
import streamlit as st
|
9 |
from typing import Optional, Tuple, Dict, Any, List, Union
|
10 |
|
11 |
-
#
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# --- DICOM Parsing ---
|
15 |
|
16 |
-
@st.cache_data(max_entries=10, show_spinner=False)
|
17 |
-
def parse_dicom(dicom_bytes: bytes, filename: str = "Uploaded File") -> Optional[pydicom.Dataset]:
|
18 |
"""
|
19 |
Parses DICOM file bytes into a pydicom Dataset object.
|
20 |
-
|
21 |
Args:
|
22 |
dicom_bytes: The raw bytes of the DICOM file.
|
23 |
filename: The original filename for logging/error messages.
|
24 |
-
|
|
|
25 |
Returns:
|
26 |
A pydicom Dataset object if successful, otherwise None.
|
27 |
"""
|
28 |
logger.info(f"Attempting to parse DICOM data from '{filename}' ({len(dicom_bytes)} bytes)...")
|
29 |
try:
|
30 |
-
# Use force=True to potentially read files with minor header issues,
|
31 |
-
# but be aware this might allow slightly non-compliant files.
|
32 |
-
# Consider if strict compliance is necessary for your use case.
|
33 |
ds = pydicom.dcmread(io.BytesIO(dicom_bytes), force=True)
|
34 |
logger.info(f"Successfully parsed DICOM data from '{filename}'. SOP Class: {ds.SOPClassUID.name if 'SOPClassUID' in ds else 'Unknown'}")
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
# st.warning(f"'{filename}' does not contain image data (PixelData tag missing).")
|
40 |
-
# return None # Optionally return None if PixelData is mandatory
|
41 |
-
|
42 |
return ds
|
43 |
except pydicom.errors.InvalidDicomError as e:
|
44 |
-
logger.error(f"Invalid DICOM data encountered in '{filename}': {e}", exc_info=False)
|
45 |
st.error(f"Error parsing '{filename}': The file is not a valid DICOM file or is corrupted. Details: {e}")
|
46 |
return None
|
47 |
except Exception as e:
|
@@ -51,26 +62,21 @@ def parse_dicom(dicom_bytes: bytes, filename: str = "Uploaded File") -> Optional
|
|
51 |
|
52 |
# --- DICOM Metadata Extraction ---
|
53 |
|
54 |
-
@st.cache_data(max_entries=10, show_spinner=False)
|
55 |
-
def extract_dicom_metadata(ds: pydicom.Dataset) -> Dict[str, Any]:
|
56 |
"""
|
57 |
Extracts a predefined set of technical DICOM metadata tags.
|
58 |
-
|
59 |
Args:
|
60 |
ds: The pydicom Dataset object.
|
61 |
-
|
|
|
62 |
Returns:
|
63 |
A dictionary containing the values of the extracted tags.
|
64 |
-
Note: This function extracts technical parameters and does NOT perform
|
65 |
-
comprehensive PHI filtering. Rely on specific filtering mechanisms
|
66 |
-
(like in the report generation) before displaying sensitive data.
|
67 |
"""
|
68 |
-
logger.debug(f"Extracting
|
69 |
metadata = {}
|
70 |
-
# Define technical tags typically safe and useful for display/processing
|
71 |
-
# **This is NOT a PHI filter list.**
|
72 |
tags_to_extract = {
|
73 |
-
# Tag Name (for dict key) : (Group, Element)
|
74 |
"Modality": (0x0008, 0x0060),
|
75 |
"StudyDescription": (0x0008, 0x1030),
|
76 |
"SeriesDescription": (0x0008, 0x103E),
|
@@ -89,31 +95,28 @@ def extract_dicom_metadata(ds: pydicom.Dataset) -> Dict[str, Any]:
|
|
89 |
"BitsAllocated": (0x0028, 0x0100),
|
90 |
"BitsStored": (0x0028, 0x0101),
|
91 |
"HighBit": (0x0028, 0x0102),
|
92 |
-
"PixelRepresentation": (0x0028, 0x0103),
|
93 |
"SamplesPerPixel": (0x0028, 0x0002),
|
94 |
}
|
95 |
-
|
96 |
for name, tag_address in tags_to_extract.items():
|
97 |
try:
|
98 |
element = ds[tag_address]
|
99 |
value = element.value
|
100 |
-
# Handle None, empty sequences, or empty strings explicitly
|
101 |
if value is None or value == "":
|
102 |
metadata[name] = "N/A"
|
103 |
continue
|
104 |
|
105 |
-
# Nicer representation for specific types
|
106 |
if isinstance(value, pydicom.uid.UID):
|
107 |
-
display_value = value.name
|
108 |
-
elif isinstance(value, list):
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
display_value = int(value)
|
115 |
else:
|
116 |
-
|
117 |
|
118 |
metadata[name] = display_value
|
119 |
|
@@ -121,16 +124,17 @@ def extract_dicom_metadata(ds: pydicom.Dataset) -> Dict[str, Any]:
|
|
121 |
logger.debug(f"Metadata tag {name} ({tag_address}) not found in dataset.")
|
122 |
metadata[name] = "Not Found"
|
123 |
except Exception as e:
|
124 |
-
|
125 |
-
logger.warning(f"Could not read or process metadata tag {name} ({tag_address}): {e}", exc_info=False)
|
126 |
metadata[name] = "Error Reading"
|
127 |
-
|
128 |
-
logger.debug(f"
|
|
|
|
|
129 |
return metadata
|
130 |
|
131 |
# --- DICOM Image Conversion ---
|
132 |
|
133 |
-
@st.cache_data(max_entries=20, show_spinner="Processing DICOM image...")
|
134 |
def dicom_to_image(
|
135 |
ds: pydicom.Dataset,
|
136 |
window_center: Optional[Union[float, List[float]]] = None,
|
@@ -138,231 +142,193 @@ def dicom_to_image(
|
|
138 |
) -> Optional[Image.Image]:
|
139 |
"""
|
140 |
Converts DICOM pixel data to a displayable PIL Image (RGB), applying VOI LUT.
|
141 |
-
|
142 |
-
Handles grayscale and some basic color formats. Uses provided Window/Level
|
143 |
-
values or falls back to dataset defaults or simple min/max scaling.
|
144 |
-
|
145 |
Args:
|
146 |
ds: The pydicom Dataset object containing PixelData.
|
147 |
-
window_center: Window Center
|
148 |
-
window_width: Window Width value(s) for VOI LUT
|
149 |
-
|
150 |
Returns:
|
151 |
A PIL Image object in RGB format, or None if processing fails.
|
152 |
"""
|
153 |
if 'PixelData' not in ds:
|
154 |
-
logger.error("Cannot convert to image:
|
155 |
-
# No st.error here as parse_dicom might have warned already, avoid duplication
|
156 |
return None
|
157 |
|
158 |
-
logger.debug(f"
|
159 |
-
|
160 |
try:
|
161 |
-
pixel_array = ds.pixel_array
|
162 |
|
163 |
-
# --- Determine and Apply Window/Level ---
|
164 |
wc_to_use: Optional[float] = None
|
165 |
ww_to_use: Optional[float] = None
|
166 |
-
|
167 |
-
# Prioritize user-provided W/L values
|
168 |
if window_center is not None and window_width is not None:
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
ww_to_use = None
|
184 |
|
185 |
-
# If user W/L not valid or not provided, try default W/L from DICOM tags
|
186 |
if wc_to_use is None or ww_to_use is None:
|
187 |
-
default_wc, default_ww = get_default_wl(ds)
|
188 |
if default_wc is not None and default_ww is not None:
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
|
193 |
-
# --- Apply Transformation ---
|
194 |
if wc_to_use is not None and ww_to_use is not None:
|
195 |
logger.debug(f"Applying VOI LUT with WC={wc_to_use}, WW={ww_to_use}")
|
196 |
-
# Ensure data type is appropriate if necessary before apply_voi_lut
|
197 |
-
# pixel_array = pixel_array.astype(np.float64) # Sometimes needed depending on pydicom/numpy versions
|
198 |
processed_array = apply_voi_lut(pixel_array, ds, window=ww_to_use, level=wc_to_use)
|
199 |
-
# Scale result of VOI LUT to 0-255
|
200 |
min_val, max_val = processed_array.min(), processed_array.max()
|
201 |
if max_val > min_val:
|
202 |
-
# Add small epsilon to prevent division by zero if max_val == min_val after LUT
|
203 |
pixel_array_scaled = ((processed_array - min_val) / (max_val - min_val + 1e-6)) * 255.0
|
204 |
else:
|
205 |
pixel_array_scaled = np.zeros_like(processed_array)
|
206 |
pixel_array_uint8 = pixel_array_scaled.astype(np.uint8)
|
207 |
logger.debug("VOI LUT applied and scaled to uint8.")
|
208 |
-
|
209 |
-
|
210 |
-
logger.info("No valid Window/Level found. Applying basic min/max scaling.")
|
211 |
-
# Apply Rescale Slope/Intercept if present, as VOI LUT wasn't used
|
212 |
if 'RescaleSlope' in ds and 'RescaleIntercept' in ds:
|
213 |
try:
|
214 |
slope = float(ds.RescaleSlope)
|
215 |
intercept = float(ds.RescaleIntercept)
|
216 |
if slope != 1.0 or intercept != 0.0:
|
217 |
logger.debug(f"Applying Rescale Slope ({slope}) and Intercept ({intercept})")
|
218 |
-
# Ensure float array for calculation
|
219 |
pixel_array = pixel_array.astype(np.float64) * slope + intercept
|
220 |
-
else:
|
221 |
-
logger.debug("Rescale Slope=1, Intercept=0, no rescale needed.")
|
222 |
except Exception as rescale_err:
|
223 |
-
logger.warning(f"
|
224 |
-
|
225 |
-
|
226 |
min_val, max_val = pixel_array.min(), pixel_array.max()
|
227 |
if max_val > min_val:
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
scaled_array = np.zeros_like(pixel_array)
|
232 |
pixel_array_uint8 = scaled_array.astype(np.uint8)
|
233 |
-
logger.debug("Basic
|
234 |
-
|
235 |
|
236 |
-
# --- Convert numpy array to PIL Image (RGB) ---
|
237 |
photometric_interpretation = ds.get("PhotometricInterpretation", "").upper()
|
238 |
-
logger.debug(f"Array shape
|
239 |
|
240 |
-
if pixel_array_uint8.ndim == 2:
|
241 |
-
# Common grayscale types
|
242 |
if photometric_interpretation in ("MONOCHROME1", "MONOCHROME2"):
|
243 |
image = Image.fromarray(pixel_array_uint8, mode='L').convert("RGB")
|
244 |
-
logger.debug("Converted 2D
|
245 |
-
else:
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
elif pixel_array_uint8.ndim == 3: # Potentially color or multi-frame
|
250 |
-
logger.debug(f"Input array has 3 dimensions. Photometric Interpretation: {photometric_interpretation}")
|
251 |
-
# Check samples per pixel
|
252 |
samples_per_pixel = ds.get("SamplesPerPixel", 1)
|
253 |
-
|
254 |
if samples_per_pixel == 3 and photometric_interpretation in ("RGB", "YBR_FULL", "YBR_FULL_422"):
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
else: # Unknown 3D format
|
287 |
-
logger.warning(f"Unsupported 3D array format (Samples={samples_per_pixel}, PI='{photometric_interpretation}', ndim={pixel_array_uint8.ndim}). Attempting first slice/channel.")
|
288 |
-
# Try slicing based on likely dimension order
|
289 |
try:
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
else:
|
302 |
-
logger.error(f"
|
303 |
-
st.warning("Failed to process DICOM image
|
304 |
return None
|
305 |
|
306 |
-
logger.info(f"Successfully converted DICOM to PIL Image (RGB
|
307 |
return image
|
308 |
|
309 |
except AttributeError as e:
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
return None
|
314 |
except Exception as e:
|
315 |
-
logger.error(f"Unexpected error converting DICOM
|
316 |
-
st.warning(
|
317 |
return None
|
318 |
|
319 |
# --- Window/Level Helper ---
|
320 |
|
321 |
def get_default_wl(ds: pydicom.Dataset) -> Tuple[Optional[float], Optional[float]]:
|
322 |
"""
|
323 |
-
|
324 |
-
|
325 |
-
Handles missing tags, multi-value entries (takes first), and non-numeric values.
|
326 |
-
|
327 |
Args:
|
328 |
ds: The pydicom Dataset object.
|
329 |
-
|
330 |
Returns:
|
331 |
-
A tuple
|
332 |
-
Returns (None, None) if values are not found or invalid.
|
333 |
"""
|
334 |
wc_val = ds.get("WindowCenter", None)
|
335 |
ww_val = ds.get("WindowWidth", None)
|
336 |
wc: Optional[float] = None
|
337 |
ww: Optional[float] = None
|
338 |
|
339 |
-
# Extract first value if multi-valued
|
340 |
if isinstance(wc_val, pydicom.multival.MultiValue):
|
341 |
wc_val = wc_val[0] if len(wc_val) > 0 else None
|
342 |
if isinstance(ww_val, pydicom.multival.MultiValue):
|
343 |
ww_val = ww_val[0] if len(ww_val) > 0 else None
|
344 |
|
345 |
-
# Convert safely to float
|
346 |
if wc_val is not None:
|
347 |
try:
|
348 |
wc = float(wc_val)
|
349 |
except (ValueError, TypeError):
|
350 |
-
logger.debug(f"Could not convert
|
351 |
-
wc = None
|
352 |
if ww_val is not None:
|
353 |
-
|
354 |
ww = float(ww_val)
|
355 |
-
# Basic sanity check for width
|
356 |
if ww <= 0:
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
logger.debug(f"Could not convert
|
361 |
-
ww = None
|
362 |
|
363 |
if wc is not None and ww is not None:
|
364 |
-
|
365 |
-
|
366 |
else:
|
367 |
-
|
368 |
-
|
|
|
2 |
import pydicom.errors
|
3 |
from pydicom.pixel_data_handlers.util import apply_voi_lut
|
4 |
import numpy as np
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
import io
|
7 |
import logging
|
8 |
import streamlit as st
|
9 |
from typing import Optional, Tuple, Dict, Any, List, Union
|
10 |
|
11 |
+
# Configure logger (assumed to be set up globally in your app)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
+
# --- Helper Function to Filter PHI from Metadata ---
|
15 |
+
def filter_sensitive_metadata(metadata: Dict[str, Any]) -> Dict[str, Any]:
|
16 |
+
"""
|
17 |
+
Filters out keys known to contain Protected Health Information (PHI)
|
18 |
+
from the metadata dictionary.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
metadata: Dictionary of metadata tags.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
Filtered dictionary with PHI removed.
|
25 |
+
"""
|
26 |
+
# List of keys that might contain PHI (adjust as needed)
|
27 |
+
phi_keys = {"PatientName", "PatientID", "PatientBirthDate", "PatientSex", "PatientAddress"}
|
28 |
+
return {k: v for k, v in metadata.items() if k not in phi_keys}
|
29 |
+
|
30 |
# --- DICOM Parsing ---
|
31 |
|
32 |
+
@st.cache_data(max_entries=10, show_spinner=False)
|
33 |
+
def parse_dicom(dicom_bytes: bytes, filename: str = "Uploaded File", require_pixeldata: bool = True) -> Optional[pydicom.Dataset]:
|
34 |
"""
|
35 |
Parses DICOM file bytes into a pydicom Dataset object.
|
36 |
+
|
37 |
Args:
|
38 |
dicom_bytes: The raw bytes of the DICOM file.
|
39 |
filename: The original filename for logging/error messages.
|
40 |
+
require_pixeldata: If True, treat missing PixelData as a fatal error.
|
41 |
+
|
42 |
Returns:
|
43 |
A pydicom Dataset object if successful, otherwise None.
|
44 |
"""
|
45 |
logger.info(f"Attempting to parse DICOM data from '{filename}' ({len(dicom_bytes)} bytes)...")
|
46 |
try:
|
|
|
|
|
|
|
47 |
ds = pydicom.dcmread(io.BytesIO(dicom_bytes), force=True)
|
48 |
logger.info(f"Successfully parsed DICOM data from '{filename}'. SOP Class: {ds.SOPClassUID.name if 'SOPClassUID' in ds else 'Unknown'}")
|
49 |
+
if require_pixeldata and 'PixelData' not in ds:
|
50 |
+
logger.error(f"DICOM file '{filename}' is missing PixelData tag.")
|
51 |
+
st.error(f"Error: '{filename}' does not contain image data (PixelData tag missing).")
|
52 |
+
return None
|
|
|
|
|
|
|
53 |
return ds
|
54 |
except pydicom.errors.InvalidDicomError as e:
|
55 |
+
logger.error(f"Invalid DICOM data encountered in '{filename}': {e}", exc_info=False)
|
56 |
st.error(f"Error parsing '{filename}': The file is not a valid DICOM file or is corrupted. Details: {e}")
|
57 |
return None
|
58 |
except Exception as e:
|
|
|
62 |
|
63 |
# --- DICOM Metadata Extraction ---
|
64 |
|
65 |
+
@st.cache_data(max_entries=10, show_spinner=False)
|
66 |
+
def extract_dicom_metadata(ds: pydicom.Dataset, filter_phi: bool = True) -> Dict[str, Any]:
|
67 |
"""
|
68 |
Extracts a predefined set of technical DICOM metadata tags.
|
69 |
+
|
70 |
Args:
|
71 |
ds: The pydicom Dataset object.
|
72 |
+
filter_phi: If True, filter out keys that may contain PHI.
|
73 |
+
|
74 |
Returns:
|
75 |
A dictionary containing the values of the extracted tags.
|
|
|
|
|
|
|
76 |
"""
|
77 |
+
logger.debug(f"Extracting technical metadata for SOP Instance UID: {ds.SOPInstanceUID if 'SOPInstanceUID' in ds else 'Unknown'}")
|
78 |
metadata = {}
|
|
|
|
|
79 |
tags_to_extract = {
|
|
|
80 |
"Modality": (0x0008, 0x0060),
|
81 |
"StudyDescription": (0x0008, 0x1030),
|
82 |
"SeriesDescription": (0x0008, 0x103E),
|
|
|
95 |
"BitsAllocated": (0x0028, 0x0100),
|
96 |
"BitsStored": (0x0028, 0x0101),
|
97 |
"HighBit": (0x0028, 0x0102),
|
98 |
+
"PixelRepresentation": (0x0028, 0x0103),
|
99 |
"SamplesPerPixel": (0x0028, 0x0002),
|
100 |
}
|
101 |
+
|
102 |
for name, tag_address in tags_to_extract.items():
|
103 |
try:
|
104 |
element = ds[tag_address]
|
105 |
value = element.value
|
|
|
106 |
if value is None or value == "":
|
107 |
metadata[name] = "N/A"
|
108 |
continue
|
109 |
|
|
|
110 |
if isinstance(value, pydicom.uid.UID):
|
111 |
+
display_value = value.name
|
112 |
+
elif isinstance(value, list):
|
113 |
+
display_value = ", ".join(map(str, value))
|
114 |
+
elif isinstance(value, pydicom.valuerep.DSfloat):
|
115 |
+
display_value = float(value)
|
116 |
+
elif isinstance(value, pydicom.valuerep.IS):
|
117 |
+
display_value = int(value)
|
|
|
118 |
else:
|
119 |
+
display_value = value
|
120 |
|
121 |
metadata[name] = display_value
|
122 |
|
|
|
124 |
logger.debug(f"Metadata tag {name} ({tag_address}) not found in dataset.")
|
125 |
metadata[name] = "Not Found"
|
126 |
except Exception as e:
|
127 |
+
logger.warning(f"Could not read metadata tag {name} ({tag_address}): {e}", exc_info=False)
|
|
|
128 |
metadata[name] = "Error Reading"
|
129 |
+
|
130 |
+
logger.debug(f"Extracted {len(metadata)} metadata tags.")
|
131 |
+
if filter_phi:
|
132 |
+
metadata = filter_sensitive_metadata(metadata)
|
133 |
return metadata
|
134 |
|
135 |
# --- DICOM Image Conversion ---
|
136 |
|
137 |
+
@st.cache_data(max_entries=20, show_spinner="Processing DICOM image...")
|
138 |
def dicom_to_image(
|
139 |
ds: pydicom.Dataset,
|
140 |
window_center: Optional[Union[float, List[float]]] = None,
|
|
|
142 |
) -> Optional[Image.Image]:
|
143 |
"""
|
144 |
Converts DICOM pixel data to a displayable PIL Image (RGB), applying VOI LUT.
|
145 |
+
|
|
|
|
|
|
|
146 |
Args:
|
147 |
ds: The pydicom Dataset object containing PixelData.
|
148 |
+
window_center: Window Center value(s) for VOI LUT (first used if list).
|
149 |
+
window_width: Window Width value(s) for VOI LUT (first used if list).
|
150 |
+
|
151 |
Returns:
|
152 |
A PIL Image object in RGB format, or None if processing fails.
|
153 |
"""
|
154 |
if 'PixelData' not in ds:
|
155 |
+
logger.error("Cannot convert to image: Missing PixelData tag.")
|
|
|
156 |
return None
|
157 |
|
158 |
+
logger.debug(f"Converting DICOM to image. Photometric Interpretation: {ds.get('PhotometricInterpretation', 'N/A')}")
|
159 |
+
|
160 |
try:
|
161 |
+
pixel_array = ds.pixel_array
|
162 |
|
|
|
163 |
wc_to_use: Optional[float] = None
|
164 |
ww_to_use: Optional[float] = None
|
165 |
+
|
|
|
166 |
if window_center is not None and window_width is not None:
|
167 |
+
wc_in = window_center[0] if isinstance(window_center, list) and window_center else window_center
|
168 |
+
ww_in = window_width[0] if isinstance(window_width, list) and window_width else window_width
|
169 |
+
try:
|
170 |
+
wc_to_use = float(wc_in) if wc_in is not None else None
|
171 |
+
ww_to_use = float(ww_in) if ww_in is not None else None
|
172 |
+
if ww_to_use is not None and ww_to_use <= 0:
|
173 |
+
logger.warning(f"Provided Window Width ({ww_to_use}) is invalid. Ignoring.")
|
174 |
+
ww_to_use = None
|
175 |
+
else:
|
176 |
+
logger.info(f"Using provided WC/WW: {wc_to_use} / {ww_to_use}")
|
177 |
+
except (ValueError, TypeError):
|
178 |
+
logger.warning(f"Conversion error for provided WC/WW values ('{wc_in}', '{ww_in}'). Ignoring.")
|
179 |
+
wc_to_use = None
|
180 |
+
ww_to_use = None
|
|
|
181 |
|
|
|
182 |
if wc_to_use is None or ww_to_use is None:
|
183 |
+
default_wc, default_ww = get_default_wl(ds)
|
184 |
if default_wc is not None and default_ww is not None:
|
185 |
+
wc_to_use = default_wc
|
186 |
+
ww_to_use = default_ww
|
187 |
+
logger.info(f"Using default WC/WW: {wc_to_use} / {ww_to_use}")
|
188 |
|
|
|
189 |
if wc_to_use is not None and ww_to_use is not None:
|
190 |
logger.debug(f"Applying VOI LUT with WC={wc_to_use}, WW={ww_to_use}")
|
|
|
|
|
191 |
processed_array = apply_voi_lut(pixel_array, ds, window=ww_to_use, level=wc_to_use)
|
|
|
192 |
min_val, max_val = processed_array.min(), processed_array.max()
|
193 |
if max_val > min_val:
|
|
|
194 |
pixel_array_scaled = ((processed_array - min_val) / (max_val - min_val + 1e-6)) * 255.0
|
195 |
else:
|
196 |
pixel_array_scaled = np.zeros_like(processed_array)
|
197 |
pixel_array_uint8 = pixel_array_scaled.astype(np.uint8)
|
198 |
logger.debug("VOI LUT applied and scaled to uint8.")
|
199 |
+
else:
|
200 |
+
logger.info("No valid WC/WW provided. Applying basic min/max scaling.")
|
|
|
|
|
201 |
if 'RescaleSlope' in ds and 'RescaleIntercept' in ds:
|
202 |
try:
|
203 |
slope = float(ds.RescaleSlope)
|
204 |
intercept = float(ds.RescaleIntercept)
|
205 |
if slope != 1.0 or intercept != 0.0:
|
206 |
logger.debug(f"Applying Rescale Slope ({slope}) and Intercept ({intercept})")
|
|
|
207 |
pixel_array = pixel_array.astype(np.float64) * slope + intercept
|
|
|
|
|
208 |
except Exception as rescale_err:
|
209 |
+
logger.warning(f"Rescale Slope/Intercept error: {rescale_err}")
|
|
|
|
|
210 |
min_val, max_val = pixel_array.min(), pixel_array.max()
|
211 |
if max_val > min_val:
|
212 |
+
scaled_array = ((pixel_array - min_val) / (max_val - min_val + 1e-6)) * 255.0
|
213 |
+
else:
|
214 |
+
scaled_array = np.zeros_like(pixel_array)
|
|
|
215 |
pixel_array_uint8 = scaled_array.astype(np.uint8)
|
216 |
+
logger.debug("Basic scaling applied and converted to uint8.")
|
|
|
217 |
|
|
|
218 |
photometric_interpretation = ds.get("PhotometricInterpretation", "").upper()
|
219 |
+
logger.debug(f"Array shape: {pixel_array_uint8.shape}, dtype: {pixel_array_uint8.dtype}")
|
220 |
|
221 |
+
if pixel_array_uint8.ndim == 2:
|
|
|
222 |
if photometric_interpretation in ("MONOCHROME1", "MONOCHROME2"):
|
223 |
image = Image.fromarray(pixel_array_uint8, mode='L').convert("RGB")
|
224 |
+
logger.debug("Converted 2D grayscale array to RGB.")
|
225 |
+
else:
|
226 |
+
logger.warning(f"Unknown 2D Photometric Interpretation '{photometric_interpretation}'. Using MONOCHROME2 assumption.")
|
227 |
+
image = Image.fromarray(pixel_array_uint8, mode='L').convert("RGB")
|
228 |
+
elif pixel_array_uint8.ndim == 3:
|
|
|
|
|
|
|
229 |
samples_per_pixel = ds.get("SamplesPerPixel", 1)
|
|
|
230 |
if samples_per_pixel == 3 and photometric_interpretation in ("RGB", "YBR_FULL", "YBR_FULL_422"):
|
231 |
+
planar_config = ds.get("PlanarConfiguration", 0)
|
232 |
+
if planar_config == 0:
|
233 |
+
if pixel_array_uint8.shape[-1] == 3:
|
234 |
+
image = Image.fromarray(pixel_array_uint8, mode='RGB')
|
235 |
+
logger.debug("Converted 3D array (PlanarConfig=0) to RGB.")
|
236 |
+
else:
|
237 |
+
logger.warning(f"Unexpected shape for PlanarConfig=0: {pixel_array_uint8.shape}. Using first channel.")
|
238 |
+
image = Image.fromarray(pixel_array_uint8[:,:,0], mode='L').convert("RGB")
|
239 |
+
elif planar_config == 1:
|
240 |
+
if pixel_array_uint8.shape[0] == 3:
|
241 |
+
logger.debug("Reshaping 3D array (PlanarConfig=1) for RGB conversion.")
|
242 |
+
reshaped_array = np.transpose(pixel_array_uint8, (1, 2, 0))
|
243 |
+
image = Image.fromarray(reshaped_array, mode='RGB')
|
244 |
+
else:
|
245 |
+
logger.warning(f"Unexpected shape for PlanarConfig=1: {pixel_array_uint8.shape}. Using first plane.")
|
246 |
+
image = Image.fromarray(pixel_array_uint8[0,:,:], mode='L').convert("RGB")
|
247 |
+
else:
|
248 |
+
logger.warning(f"Unexpected Planar Configuration ({planar_config}). Assuming color-by-pixel.")
|
249 |
+
if pixel_array_uint8.shape[-1] == 3:
|
250 |
+
image = Image.fromarray(pixel_array_uint8, mode='RGB')
|
251 |
+
else:
|
252 |
+
image = Image.fromarray(pixel_array_uint8[:,:,0], mode='L').convert("RGB")
|
253 |
+
elif samples_per_pixel == 1:
|
254 |
+
# Multi-frame grayscale: if more than one frame, take the first one.
|
255 |
+
if pixel_array_uint8.shape[0] > 1:
|
256 |
+
logger.info("Detected multi-frame grayscale. Displaying first frame.")
|
257 |
+
image = Image.fromarray(pixel_array_uint8[0,:,:], mode='L').convert("RGB")
|
258 |
+
else:
|
259 |
+
image = Image.fromarray(pixel_array_uint8, mode='L').convert("RGB")
|
260 |
+
else:
|
261 |
+
logger.warning(f"Unsupported 3D array format: shape {pixel_array_uint8.shape}, SamplesPerPixel={samples_per_pixel}.")
|
|
|
|
|
|
|
262 |
try:
|
263 |
+
if pixel_array_uint8.ndim == 3 and pixel_array_uint8.shape[0] > 1:
|
264 |
+
image = Image.fromarray(pixel_array_uint8[0,:,:], mode='L').convert("RGB")
|
265 |
+
else:
|
266 |
+
image = Image.fromarray(pixel_array_uint8[:,:,0], mode='L').convert("RGB")
|
267 |
+
except Exception as e:
|
268 |
+
logger.error("Error extracting 2D slice from 3D array.")
|
269 |
+
return None
|
270 |
+
elif pixel_array_uint8.ndim == 4:
|
271 |
+
logger.error(f"Unsupported 4D array dimensions: {pixel_array_uint8.shape}")
|
272 |
+
st.warning("Failed to process DICOM image: 4D data is not supported.")
|
273 |
+
return None
|
274 |
+
else:
|
275 |
+
logger.error(f"Unsupported array dimensions: {pixel_array_uint8.ndim}")
|
276 |
+
st.warning("Failed to process DICOM image due to unsupported array dimensions.")
|
277 |
return None
|
278 |
|
279 |
+
logger.info(f"Successfully converted DICOM to PIL Image (RGB, size: {image.size}).")
|
280 |
return image
|
281 |
|
282 |
except AttributeError as e:
|
283 |
+
logger.error(f"AttributeError during image conversion: {e}", exc_info=False)
|
284 |
+
st.warning(f"Failed to process image data: Required DICOM tag missing ({e}).")
|
285 |
+
return None
|
|
|
286 |
except Exception as e:
|
287 |
+
logger.error(f"Unexpected error converting DICOM to image: {e}", exc_info=True)
|
288 |
+
st.warning("An unexpected error occurred while processing DICOM image data.")
|
289 |
return None
|
290 |
|
291 |
# --- Window/Level Helper ---
|
292 |
|
293 |
def get_default_wl(ds: pydicom.Dataset) -> Tuple[Optional[float], Optional[float]]:
|
294 |
"""
|
295 |
+
Retrieves default Window Center and Width from DICOM tags.
|
296 |
+
|
|
|
|
|
297 |
Args:
|
298 |
ds: The pydicom Dataset object.
|
299 |
+
|
300 |
Returns:
|
301 |
+
A tuple (WindowCenter, WindowWidth) or (None, None) if not found.
|
|
|
302 |
"""
|
303 |
wc_val = ds.get("WindowCenter", None)
|
304 |
ww_val = ds.get("WindowWidth", None)
|
305 |
wc: Optional[float] = None
|
306 |
ww: Optional[float] = None
|
307 |
|
|
|
308 |
if isinstance(wc_val, pydicom.multival.MultiValue):
|
309 |
wc_val = wc_val[0] if len(wc_val) > 0 else None
|
310 |
if isinstance(ww_val, pydicom.multival.MultiValue):
|
311 |
ww_val = ww_val[0] if len(ww_val) > 0 else None
|
312 |
|
|
|
313 |
if wc_val is not None:
|
314 |
try:
|
315 |
wc = float(wc_val)
|
316 |
except (ValueError, TypeError):
|
317 |
+
logger.debug(f"Could not convert WindowCenter '{wc_val}' to float.")
|
318 |
+
wc = None
|
319 |
if ww_val is not None:
|
320 |
+
try:
|
321 |
ww = float(ww_val)
|
|
|
322 |
if ww <= 0:
|
323 |
+
logger.debug(f"Invalid WindowWidth ({ww}).")
|
324 |
+
ww = None
|
325 |
+
except (ValueError, TypeError):
|
326 |
+
logger.debug(f"Could not convert WindowWidth '{ww_val}' to float.")
|
327 |
+
ww = None
|
328 |
|
329 |
if wc is not None and ww is not None:
|
330 |
+
logger.debug(f"Found default WC/WW: {wc} / {ww}")
|
331 |
+
return wc, ww
|
332 |
else:
|
333 |
+
logger.debug("Default WC/WW not found or invalid.")
|
334 |
+
return None, None
|