mgbam commited on
Commit
181f321
Β·
verified Β·
1 Parent(s): 43f3d61

Update deployer/gradio_generator.py

Browse files
Files changed (1) hide show
  1. deployer/gradio_generator.py +89 -67
deployer/gradio_generator.py CHANGED
@@ -1,99 +1,121 @@
1
- # gradio_generator.py - CPU & Spaces-compatible Gradio interface with voice recording for RoboSage
2
 
3
  import os
 
4
  import gradio as gr
 
5
  from deployer.simulator_interface import VirtualRobot
6
- from openai import OpenAI
7
-
8
- # Initialize OpenAI client for transcription
9
- OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
10
- if not OPENAI_API_KEY:
11
- raise EnvironmentError("Please set the OPENAI_API_KEY environment variable for audio transcription.")
12
- openai_client = OpenAI(api_key=OPENAI_API_KEY)
13
-
14
-
15
- def transcribe_audio(audio_file: str) -> str:
16
- """
17
- Transcribe recorded audio using OpenAI Whisper API.
18
- Returns the transcribed text.
19
- """
20
- with open(audio_file, "rb") as f:
21
- response = openai_client.audio.transcriptions.create(
22
- file=f,
23
- model="whisper-1"
24
- )
25
- return response.text
26
-
27
-
28
  def robot_behavior(user_input: str) -> str:
29
- """
30
- Bridge between user input and VirtualRobot actions with basic NLU.
31
- """
32
  bot = VirtualRobot()
33
  text = user_input.strip().lower()
34
-
35
- # Greeting detection
36
  if any(greet in text for greet in ["hello", "hi", "hey", "welcome"]):
37
  return bot.perform_action("wave") + "\n" + bot.perform_action("say Hello there!")
38
-
39
- # Direct speech command
40
  if text.startswith("say "):
41
  return bot.perform_action(text)
42
-
43
- # Fallback for unrecognized commands
44
  return bot.perform_action("say I'm sorry, I didn't understand that.")
45
 
 
 
 
 
46
 
47
  def transcribe_and_respond(audio_file: str) -> str:
48
- """
49
- Transcribe audio input and run robot_behavior.
50
- """
51
  text = transcribe_audio(audio_file)
52
  return robot_behavior(text)
53
 
54
-
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  def launch_gradio_app(
56
  title: str = "RoboSage App",
57
- description: str = "Your robot, your voice."
58
  ) -> gr.Blocks:
59
- """
60
- Constructs and returns a Gradio Blocks app with voice and text input for simulation.
61
- """
62
  with gr.Blocks() as demo:
63
- gr.Markdown(f"# πŸ€– {title}\n\n{description}")
64
-
65
- with gr.Accordion("πŸ€– Test your robot", open=True):
66
- # Text input section
67
- text_input = gr.Textbox(
68
- label="Text Command",
69
- placeholder="Type 'hello' or 'say Have a great day!'"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  )
 
 
 
 
 
71
  text_btn = gr.Button("Send Text", key="send-text-btn")
72
- text_output = gr.Textbox(label="Robot Response", lines=4, interactive=False)
73
- text_btn.click(
74
- fn=robot_behavior,
75
- inputs=[text_input],
76
- outputs=[text_output]
77
- )
78
 
79
  gr.Markdown("---")
80
-
81
- # Voice input section
82
- audio_input = gr.Audio(
83
- source="microphone",
84
- type="filepath",
85
- label="Record Command"
86
- )
87
  audio_btn = gr.Button("Send Audio", key="send-audio-btn")
88
- audio_output = gr.Textbox(label="Robot Response (via voice)", lines=4, interactive=False)
89
- audio_btn.click(
90
- fn=transcribe_and_respond,
91
- inputs=[audio_input],
92
- outputs=[audio_output]
93
- )
94
 
95
- return demo
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
 
 
 
 
97
 
98
  if __name__ == "__main__":
99
  app = launch_gradio_app()
 
1
+ # gradio_generator.py - CPU & Spaces-compatible Gradio interface with full monetization & artifact management for RoboSage
2
 
3
  import os
4
+ import json
5
  import gradio as gr
6
+ from transformers import pipeline
7
  from deployer.simulator_interface import VirtualRobot
8
+ from deployer.revenue_tracker import get_revenue_stats, package_artifacts
9
+ from core_creator.voice_to_app import VoiceToAppCreator
10
+
11
+ # Initialize Hugging Face ASR pipeline
12
+ HK_API_KEY = os.getenv("HK_API_KEY")
13
+ if not HK_API_KEY:
14
+ raise EnvironmentError("Please set the HK_API_KEY environment variable for audio transcription via HuggingFace API.")
15
+ asr = pipeline(
16
+ task="automatic-speech-recognition",
17
+ model="openai/whisper-small",
18
+ use_auth_token=HK_API_KEY
19
+ )
20
+
21
+ # Core actions
 
 
 
 
 
 
 
 
22
  def robot_behavior(user_input: str) -> str:
 
 
 
23
  bot = VirtualRobot()
24
  text = user_input.strip().lower()
 
 
25
  if any(greet in text for greet in ["hello", "hi", "hey", "welcome"]):
26
  return bot.perform_action("wave") + "\n" + bot.perform_action("say Hello there!")
 
 
27
  if text.startswith("say "):
28
  return bot.perform_action(text)
 
 
29
  return bot.perform_action("say I'm sorry, I didn't understand that.")
30
 
31
+ # Transcription helper
32
+ def transcribe_audio(audio_file: str) -> str:
33
+ result = asr(audio_file)
34
+ return result.get("text", "")
35
 
36
  def transcribe_and_respond(audio_file: str) -> str:
 
 
 
37
  text = transcribe_audio(audio_file)
38
  return robot_behavior(text)
39
 
40
+ # Generation & packaging pipeline
41
+ def generate_and_package_app(idea: str):
42
+ creator = VoiceToAppCreator(idea)
43
+ assets = creator.run_pipeline()
44
+ # Package code & config into zip and return path
45
+ zip_path = package_artifacts(assets)
46
+ # Prepare blueprint and code previews
47
+ blueprint = assets.get("blueprint", {})
48
+ code_files = assets.get("code", {}) # dict of {filename: code_str}
49
+ # Concatenate code files for preview
50
+ code_preview = "\n\n".join([f"# {fname}\n{content}" for fname, content in code_files.items()])
51
+ return zip_path, blueprint, code_preview
52
+
53
+ # Build full-featured Gradio app
54
  def launch_gradio_app(
55
  title: str = "RoboSage App",
56
+ description: str = "Your robot, your voice, monetized."
57
  ) -> gr.Blocks:
 
 
 
58
  with gr.Blocks() as demo:
59
+ gr.Markdown(f"# πŸš€ {title}\n\n{description}")
60
+
61
+ # 1️⃣ Generate & Download Artifacts
62
+ with gr.Accordion("🎨 Generate App & Download Artifacts", open=True):
63
+ idea = gr.Textbox(label="Robot Idea", placeholder="e.g. A friendly greeting robot.")
64
+ gen_btn = gr.Button("Generate & Package", key="gen-app-btn")
65
+ status = gr.Textbox(label="Generation Status", interactive=False)
66
+ download_zip = gr.File(label="Download Artifacts (.zip)")
67
+ blueprint_view = gr.JSON(label="App Blueprint")
68
+ code_view = gr.Code(label="Generated Code Preview", language="python")
69
+
70
+ def on_generate(i):
71
+ zip_path, blueprint, code_preview = generate_and_package_app(i)
72
+ return (
73
+ "βœ… App generated successfully!",
74
+ zip_path,
75
+ blueprint,
76
+ code_preview
77
+ )
78
+
79
+ gen_btn.click(
80
+ fn=on_generate,
81
+ inputs=[idea],
82
+ outputs=[status, download_zip, blueprint_view, code_view]
83
  )
84
+
85
+ # 2️⃣ Robot Simulation
86
+ with gr.Accordion("πŸ€– Test Your Robot (Text & Voice)", open=False):
87
+ # Text command
88
+ text_input = gr.Textbox(label="Text Command", placeholder="Type 'hello' or 'say Great job!'" )
89
  text_btn = gr.Button("Send Text", key="send-text-btn")
90
+ text_output = gr.Textbox(label="Robot Response", lines=3, interactive=False)
91
+ text_btn.click(fn=robot_behavior, inputs=[text_input], outputs=[text_output])
 
 
 
 
92
 
93
  gr.Markdown("---")
94
+ # Voice command
95
+ audio_input = gr.Audio(source="microphone", type="filepath", label="Record Command")
 
 
 
 
 
96
  audio_btn = gr.Button("Send Audio", key="send-audio-btn")
97
+ audio_output = gr.Textbox(label="Robot Response (via voice)", lines=3, interactive=False)
98
+ audio_btn.click(fn=transcribe_and_respond, inputs=[audio_input], outputs=[audio_output])
 
 
 
 
99
 
100
+ # 3️⃣ Monetization & Revenue
101
+ with gr.Accordion("πŸ’° Monetization Dashboard", open=False):
102
+ subscribe_btn = gr.Button("Subscribe to Pro Plan", key="subscribe-btn")
103
+ subscribe_msg = gr.Textbox(label="Subscription Status", interactive=False)
104
+ rev_btn = gr.Button("View Revenue Stats", key="rev-stats-btn")
105
+ rev_table = gr.Dataframe(label="Revenue & Usage Metrics")
106
+
107
+ def on_subscribe():
108
+ # Stubbed subscription activation
109
+ return "βœ… Subscribed! You now have access to premium features."
110
+
111
+ def on_view_revenue():
112
+ df = get_revenue_stats()
113
+ return df
114
 
115
+ subscribe_btn.click(fn=on_subscribe, inputs=None, outputs=[subscribe_msg])
116
+ rev_btn.click(fn=on_view_revenue, inputs=None, outputs=[rev_table])
117
+
118
+ return demo
119
 
120
  if __name__ == "__main__":
121
  app = launch_gradio_app()