File size: 4,043 Bytes
cffc4f1
 
21479b0
cffc4f1
 
21479b0
cffc4f1
896af9f
cffc4f1
21479b0
 
896af9f
cffc4f1
 
 
896af9f
cffc4f1
21479b0
896af9f
cffc4f1
896af9f
cffc4f1
 
 
896af9f
cffc4f1
21479b0
cffc4f1
 
896af9f
21479b0
cffc4f1
21479b0
cffc4f1
896af9f
cffc4f1
 
21479b0
896af9f
21479b0
 
 
 
 
 
 
896af9f
21479b0
 
 
896af9f
21479b0
896af9f
21479b0
 
 
 
 
 
 
 
896af9f
21479b0
 
896af9f
21479b0
 
 
 
896af9f
21479b0
 
 
 
 
 
 
 
 
 
896af9f
21479b0
 
896af9f
 
21479b0
 
 
896af9f
21479b0
 
896af9f
 
21479b0
 
 
896af9f
21479b0
 
896af9f
 
 
21479b0
 
 
 
 
 
 
cffc4f1
896af9f
cffc4f1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import streamlit as st
import os
import subprocess

def main():
    st.title("Smart Edit Assistant")

    # 1. Upload a video
    uploaded_file = st.file_uploader("Upload your video", type=["mp4", "mov", "mkv"])

    if uploaded_file:
        # Save the uploaded file to temp_input.mp4
        with open("temp_input.mp4", "wb") as f:
            f.write(uploaded_file.getbuffer())

        # Display the original video
        st.video("temp_input.mp4")

        # Button to process the video
        if st.button("Process Video"):
            # Extract audio using FFmpeg
            with st.spinner("Extracting audio..."):
                audio_path = extract_audio_ffmpeg("temp_input.mp4", "temp_audio.wav")

            # Transcribe audio (placeholder)
            with st.spinner("Transcribing..."):
                transcript_text = transcribe_audio(audio_path)
            st.text_area("Transcript", transcript_text, height=200)

            # Generate editing instructions (placeholder)
            with st.spinner("Generating edit instructions..."):
                edit_instructions = generate_edit_instructions(transcript_text)
            st.write("AI Edit Instructions:", edit_instructions)

            # Apply edits (placeholder) with FFmpeg
            with st.spinner("Applying edits..."):
                edited_video_path = apply_edits("temp_input.mp4", edit_instructions)

            # Verify the edited video file
            abs_edited_path = os.path.join(os.getcwd(), edited_video_path)
            if not os.path.exists(abs_edited_path):
                st.error(f"Edited video file not found at '{abs_edited_path}'. Check logs.")
                return

            file_size = os.path.getsize(abs_edited_path)
            if file_size == 0:
                st.error("Edited video file is empty (0 bytes). Check ffmpeg or editing logic.")
                return

            st.success("Edit complete! Now previewing the edited video.")
            st.video(abs_edited_path)

            # Provide a download button for the edited file
            with open(abs_edited_path, "rb") as f_out:
                st.download_button(
                    label="Download Edited Video",
                    data=f_out,
                    file_name="edited_result.mp4",
                    mime="video/mp4",
                )


def extract_audio_ffmpeg(input_video, output_audio):
    """
    Calls ffmpeg to extract audio. Returns the output_audio path if successful; raises if not.
    """
    cmd = [
        "ffmpeg", "-y",
        "-i", input_video,
        "-vn",  # Strip out the video
        "-acodec", "pcm_s16le",
        "-ar", "16000",
        "-ac", "1",
        output_audio
    ]
    result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    if result.returncode != 0:
        raise RuntimeError(f"ffmpeg error: {result.stderr.decode()}")
    return output_audio


def transcribe_audio(audio_path):
    """
    Placeholder for your transcription logic (local Whisper, OpenAI Whisper API, etc.).
    Here, we simply return a mock transcript for demonstration.
    """
    return "This is a mock transcript."


def generate_edit_instructions(transcript_text):
    """
    Placeholder for GPT or other LLM-based logic. 
    Return instructions (text, JSON, etc.) detailing how to edit the video.
    """
    return "Keep everything; no major edits."


def apply_edits(input_video, edit_instructions):
    """
    A simple placeholder function. In practice, you'd parse instructions 
    and run ffmpeg/moviepy to cut or reassemble the video. 
    Here, we just do a direct copy with ffmpeg to simulate a final step.
    """
    output_video = "edited_video.mp4"
    cmd = ["ffmpeg", "-y", "-i", input_video, "-c", "copy", output_video]
    result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    if result.returncode != 0:
        raise RuntimeError(f"ffmpeg editing error: {result.stderr.decode()}")
    return output_video


if __name__ == "__main__":
    main()