import streamlit as st import os import subprocess def main(): st.title("Smart Edit Assistant") # 1. Upload a video uploaded_file = st.file_uploader("Upload your video", type=["mp4", "mov", "mkv"]) if uploaded_file: # Save the uploaded file to temp_input.mp4 with open("temp_input.mp4", "wb") as f: f.write(uploaded_file.getbuffer()) # Display the original video st.video("temp_input.mp4") # Button to process the video if st.button("Process Video"): # Extract audio using FFmpeg with st.spinner("Extracting audio..."): audio_path = extract_audio_ffmpeg("temp_input.mp4", "temp_audio.wav") # Transcribe audio (placeholder) with st.spinner("Transcribing..."): transcript_text = transcribe_audio(audio_path) st.text_area("Transcript", transcript_text, height=200) # Generate editing instructions (placeholder) with st.spinner("Generating edit instructions..."): edit_instructions = generate_edit_instructions(transcript_text) st.write("AI Edit Instructions:", edit_instructions) # Apply edits (placeholder) with FFmpeg with st.spinner("Applying edits..."): edited_video_path = apply_edits("temp_input.mp4", edit_instructions) # Verify the edited video file abs_edited_path = os.path.join(os.getcwd(), edited_video_path) if not os.path.exists(abs_edited_path): st.error(f"Edited video file not found at '{abs_edited_path}'. Check logs.") return file_size = os.path.getsize(abs_edited_path) if file_size == 0: st.error("Edited video file is empty (0 bytes). Check ffmpeg or editing logic.") return st.success("Edit complete! Now previewing the edited video.") st.video(abs_edited_path) # Provide a download button for the edited file with open(abs_edited_path, "rb") as f_out: st.download_button( label="Download Edited Video", data=f_out, file_name="edited_result.mp4", mime="video/mp4", ) def extract_audio_ffmpeg(input_video, output_audio): """ Calls ffmpeg to extract audio. Returns the output_audio path if successful; raises if not. """ cmd = [ "ffmpeg", "-y", "-i", input_video, "-vn", # Strip out the video "-acodec", "pcm_s16le", "-ar", "16000", "-ac", "1", output_audio ] result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if result.returncode != 0: raise RuntimeError(f"ffmpeg error: {result.stderr.decode()}") return output_audio def transcribe_audio(audio_path): """ Placeholder for your transcription logic (local Whisper, OpenAI Whisper API, etc.). Here, we simply return a mock transcript for demonstration. """ return "This is a mock transcript." def generate_edit_instructions(transcript_text): """ Placeholder for GPT or other LLM-based logic. Return instructions (text, JSON, etc.) detailing how to edit the video. """ return "Keep everything; no major edits." def apply_edits(input_video, edit_instructions): """ A simple placeholder function. In practice, you'd parse instructions and run ffmpeg/moviepy to cut or reassemble the video. Here, we just do a direct copy with ffmpeg to simulate a final step. """ output_video = "edited_video.mp4" cmd = ["ffmpeg", "-y", "-i", input_video, "-c", "copy", output_video] result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if result.returncode != 0: raise RuntimeError(f"ffmpeg editing error: {result.stderr.decode()}") return output_video if __name__ == "__main__": main()