Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,9 +10,9 @@ import pandas as pd
|
|
10 |
import numpy as np
|
11 |
from io import BytesIO
|
12 |
from concurrent.futures import ThreadPoolExecutor
|
13 |
-
from transformers import pipeline
|
14 |
import hashlib
|
15 |
import time
|
|
|
16 |
|
17 |
# Configuration
|
18 |
MAX_THREADS = 4
|
@@ -22,11 +22,24 @@ SUPPORTED_MODELS = {
|
|
22 |
"Mixtral": "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
23 |
}
|
24 |
|
25 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"""Advanced API key management with encryption"""
|
27 |
-
if 'api_keys' not in st.session_state:
|
28 |
-
st.session_state.api_keys = {}
|
29 |
-
|
30 |
with st.sidebar:
|
31 |
st.header("π API Management")
|
32 |
provider = st.selectbox("Provider", list(SUPPORTED_MODELS.keys()))
|
@@ -40,74 +53,93 @@ def secure_api_handler():
|
|
40 |
else:
|
41 |
st.error("Please enter a valid API key")
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def advanced_pdf_processor(uploaded_file):
|
44 |
-
"""Multi-threaded PDF processing with
|
45 |
st.session_state.document_data = []
|
46 |
|
47 |
-
def process_page(page_data):
|
48 |
-
page_num, page = page_data
|
49 |
-
try:
|
50 |
-
text = page.extract_text() or ""
|
51 |
-
images = []
|
52 |
-
|
53 |
-
for idx, img in enumerate(page.images):
|
54 |
-
try:
|
55 |
-
width = int(img["width"])
|
56 |
-
height = int(img["height"])
|
57 |
-
stream = img["stream"]
|
58 |
-
|
59 |
-
# Advanced image processing
|
60 |
-
img_mode = "RGB"
|
61 |
-
if hasattr(stream, "colorspace"):
|
62 |
-
if "/DeviceCMYK" in str(stream.colorspace):
|
63 |
-
img_mode = "CMYK"
|
64 |
-
|
65 |
-
image = Image.frombytes(img_mode, (width, height), stream.get_data())
|
66 |
-
if img_mode != "RGB":
|
67 |
-
image = image.convert("RGB")
|
68 |
-
|
69 |
-
images.append(image)
|
70 |
-
except Exception as e:
|
71 |
-
st.error(f"Image processing error: {str(e)[:100]}")
|
72 |
-
|
73 |
-
return {"page": page_num, "text": text, "images": images}
|
74 |
-
except Exception as e:
|
75 |
-
st.error(f"Page {page_num} error: {str(e)[:100]}")
|
76 |
-
return None
|
77 |
-
|
78 |
with ThreadPoolExecutor(max_workers=MAX_THREADS) as executor:
|
79 |
with pdfplumber.open(uploaded_file) as pdf:
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
for result in results:
|
83 |
if result:
|
84 |
st.session_state.document_data.append(result)
|
85 |
-
st.
|
86 |
|
87 |
-
def
|
88 |
-
"""Multimodal text extraction with fallback
|
89 |
-
text_content = entry["text"]
|
90 |
|
91 |
if not text_content and entry["images"]:
|
92 |
-
|
93 |
for img in entry["images"]:
|
94 |
try:
|
95 |
-
|
96 |
except Exception as e:
|
97 |
st.warning(f"OCR failed: {str(e)[:100]}")
|
98 |
-
text_content = " ".join(
|
99 |
|
100 |
return text_content
|
101 |
|
102 |
-
def generate_with_retry(model, messages
|
103 |
-
"""
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
105 |
try:
|
106 |
-
client = openai.OpenAI(
|
107 |
-
base_url="https://api.deepseek.com/v1",
|
108 |
-
api_key=st.secrets.get("DEEPSEEK_API_KEY")
|
109 |
-
)
|
110 |
-
|
111 |
response = client.chat.completions.create(
|
112 |
model=SUPPORTED_MODELS[model],
|
113 |
messages=messages,
|
@@ -115,153 +147,150 @@ def generate_with_retry(model, messages, max_retries=3):
|
|
115 |
response_format={"type": "json_object"},
|
116 |
temperature=st.session_state.temperature
|
117 |
)
|
118 |
-
|
119 |
return json.loads(response.choices[0].message.content)
|
120 |
except Exception as e:
|
121 |
-
if attempt ==
|
122 |
raise
|
123 |
time.sleep(2 ** attempt)
|
124 |
|
125 |
def qa_generation_workflow():
|
126 |
-
"""Enterprise
|
127 |
-
|
128 |
-
st.error("No document data loaded")
|
129 |
-
return
|
130 |
-
|
131 |
-
progress_bar = st.progress(0)
|
132 |
-
status_text = st.empty()
|
133 |
-
|
134 |
-
total_pages = len(st.session_state.document_data)
|
135 |
-
qa_pairs = []
|
136 |
-
|
137 |
-
for idx, entry in enumerate(st.session_state.document_data):
|
138 |
-
status_text.text(f"Processing page {idx+1}/{total_pages}...")
|
139 |
-
progress_bar.progress((idx+1)/total_pages)
|
140 |
-
|
141 |
-
text_content = hybrid_text_extractor(entry)
|
142 |
-
|
143 |
-
prompt = f"""Generate 3 sophisticated Q&A pairs from:
|
144 |
-
Page {entry['page']} Content:
|
145 |
-
{text_content}
|
146 |
-
|
147 |
-
Return JSON format: {{"qa_pairs": [{{"question": "...", "answer_1": "...", "answer_2": "..."}}]}}"""
|
148 |
-
|
149 |
try:
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
except Exception as e:
|
156 |
-
|
157 |
-
|
158 |
-
st.session_state.qa_pairs = qa_pairs
|
159 |
-
progress_bar.empty()
|
160 |
-
status_text.success("Q&A generation completed!")
|
161 |
|
162 |
-
def
|
163 |
-
"""
|
164 |
-
|
165 |
-
st.error("No Q&A pairs generated")
|
166 |
-
return
|
167 |
|
168 |
-
st.
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
with st.expander("
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
st.
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
)
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
def main():
|
190 |
-
"""Main
|
191 |
st.set_page_config(
|
192 |
page_title="Synthetic Data Factory",
|
193 |
page_icon="π",
|
194 |
layout="wide"
|
195 |
)
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
st.session_state.document_data = []
|
200 |
-
if 'qa_pairs' not in st.session_state:
|
201 |
-
st.session_state.qa_pairs = []
|
202 |
|
203 |
-
# Sidebar configuration
|
204 |
with st.sidebar:
|
205 |
-
st.
|
206 |
st.session_state.model_choice = st.selectbox(
|
207 |
-
"
|
208 |
list(SUPPORTED_MODELS.keys())
|
209 |
)
|
210 |
st.session_state.temperature = st.slider(
|
211 |
"Creativity Level",
|
212 |
0.0, 1.0, 0.3
|
213 |
)
|
214 |
-
st.file_uploader(
|
215 |
-
"Upload PDF Document",
|
216 |
-
type=["pdf"],
|
217 |
-
key="doc_upload"
|
218 |
-
)
|
219 |
-
|
220 |
-
# Main interface
|
221 |
-
st.title("π Synthetic Data Factory")
|
222 |
-
st.write("Enterprise-grade synthetic data generation powered by cutting-edge AI")
|
223 |
-
|
224 |
-
# Document processing pipeline
|
225 |
-
if st.session_state.doc_upload:
|
226 |
-
if st.button("Initialize Data Generation"):
|
227 |
-
with st.spinner("Deploying AI Workers..."):
|
228 |
-
advanced_pdf_processor(st.session_state.doc_upload)
|
229 |
|
230 |
-
|
231 |
-
if st.session_state.document_data:
|
232 |
-
qa_generation_workflow()
|
233 |
-
|
234 |
-
# Evaluation system
|
235 |
-
if st.session_state.qa_pairs:
|
236 |
-
evaluation_workflow()
|
237 |
-
|
238 |
-
# Data export
|
239 |
-
if st.session_state.qa_pairs:
|
240 |
-
st.divider()
|
241 |
-
st.header("Data Export")
|
242 |
-
|
243 |
-
export_format = st.radio(
|
244 |
-
"Export Format",
|
245 |
-
["JSON", "CSV", "Parquet"]
|
246 |
-
)
|
247 |
-
|
248 |
-
if st.button("Generate Export Package"):
|
249 |
-
df = pd.DataFrame(st.session_state.qa_pairs)
|
250 |
-
|
251 |
-
buffer = BytesIO()
|
252 |
-
if export_format == "JSON":
|
253 |
-
df.to_json(buffer, orient="records")
|
254 |
-
elif export_format == "CSV":
|
255 |
-
df.to_csv(buffer, index=False)
|
256 |
-
else:
|
257 |
-
df.to_parquet(buffer)
|
258 |
-
|
259 |
-
st.download_button(
|
260 |
-
label="Download Dataset",
|
261 |
-
data=buffer.getvalue(),
|
262 |
-
file_name=f"synthetic_data_{int(time.time())}.{export_format.lower()}",
|
263 |
-
mime="application/octet-stream"
|
264 |
-
)
|
265 |
|
266 |
if __name__ == "__main__":
|
267 |
main()
|
|
|
10 |
import numpy as np
|
11 |
from io import BytesIO
|
12 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
13 |
import hashlib
|
14 |
import time
|
15 |
+
import traceback
|
16 |
|
17 |
# Configuration
|
18 |
MAX_THREADS = 4
|
|
|
22 |
"Mixtral": "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
23 |
}
|
24 |
|
25 |
+
def initialize_session_state():
|
26 |
+
"""Initialize all session state variables"""
|
27 |
+
defaults = {
|
28 |
+
'document_data': [],
|
29 |
+
'qa_pairs': [],
|
30 |
+
'processing_complete': False,
|
31 |
+
'current_stage': 'idle',
|
32 |
+
'api_keys': {},
|
33 |
+
'model_choice': "Deepseek",
|
34 |
+
'temperature': 0.3
|
35 |
+
}
|
36 |
+
|
37 |
+
for key, value in defaults.items():
|
38 |
+
if key not in st.session_state:
|
39 |
+
st.session_state[key] = value
|
40 |
+
|
41 |
+
def secure_api_management():
|
42 |
"""Advanced API key management with encryption"""
|
|
|
|
|
|
|
43 |
with st.sidebar:
|
44 |
st.header("π API Management")
|
45 |
provider = st.selectbox("Provider", list(SUPPORTED_MODELS.keys()))
|
|
|
53 |
else:
|
54 |
st.error("Please enter a valid API key")
|
55 |
|
56 |
+
def process_image(img_data, page_num, img_idx):
|
57 |
+
"""Advanced image processing with error handling"""
|
58 |
+
try:
|
59 |
+
img = img_data["stream"]
|
60 |
+
width = int(img_data["width"])
|
61 |
+
height = int(img_data["height"])
|
62 |
+
|
63 |
+
# Determine color mode
|
64 |
+
color_space = getattr(img, "colorspace", "")
|
65 |
+
mode = "RGB"
|
66 |
+
if "/DeviceCMYK" in str(color_space):
|
67 |
+
mode = "CMYK"
|
68 |
+
elif "/DeviceGray" in str(color_space):
|
69 |
+
mode = "L"
|
70 |
+
|
71 |
+
# Convert image to RGB
|
72 |
+
image = Image.frombytes(mode, (width, height), img.get_data())
|
73 |
+
if mode != "RGB":
|
74 |
+
image = image.convert("RGB")
|
75 |
+
|
76 |
+
return image
|
77 |
+
except Exception as e:
|
78 |
+
st.error(f"Image processing error (Page {page_num}, Image {img_idx}): {str(e)[:100]}")
|
79 |
+
return None
|
80 |
+
|
81 |
+
def process_page(page_data):
|
82 |
+
"""Thread-safe page processing"""
|
83 |
+
page_num, page = page_data
|
84 |
+
try:
|
85 |
+
text = page.extract_text() or ""
|
86 |
+
images = []
|
87 |
+
|
88 |
+
for idx, img in enumerate(page.images):
|
89 |
+
processed_image = process_image(img, page_num, idx)
|
90 |
+
if processed_image:
|
91 |
+
images.append(processed_image)
|
92 |
+
|
93 |
+
return {"page": page_num, "text": text.strip(), "images": images}
|
94 |
+
except Exception as e:
|
95 |
+
st.error(f"Page {page_num} error: {str(e)[:100]}")
|
96 |
+
return None
|
97 |
+
|
98 |
def advanced_pdf_processor(uploaded_file):
|
99 |
+
"""Multi-threaded PDF processing with real-time updates"""
|
100 |
st.session_state.document_data = []
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
with ThreadPoolExecutor(max_workers=MAX_THREADS) as executor:
|
103 |
with pdfplumber.open(uploaded_file) as pdf:
|
104 |
+
future = executor.submit(
|
105 |
+
lambda: list(executor.map(process_page, enumerate(pdf.pages, 1)))
|
106 |
+
)
|
107 |
+
|
108 |
+
while not future.done():
|
109 |
+
time.sleep(0.1)
|
110 |
+
st.rerun()
|
111 |
+
|
112 |
+
results = future.result()
|
113 |
|
114 |
for result in results:
|
115 |
if result:
|
116 |
st.session_state.document_data.append(result)
|
117 |
+
st.rerun()
|
118 |
|
119 |
+
def hybrid_text_extraction(entry):
|
120 |
+
"""Multimodal text extraction with fallback"""
|
121 |
+
text_content = entry["text"]
|
122 |
|
123 |
if not text_content and entry["images"]:
|
124 |
+
ocr_results = []
|
125 |
for img in entry["images"]:
|
126 |
try:
|
127 |
+
ocr_results.append(pytesseract.image_to_string(img))
|
128 |
except Exception as e:
|
129 |
st.warning(f"OCR failed: {str(e)[:100]}")
|
130 |
+
text_content = " ".join(ocr_results).strip()
|
131 |
|
132 |
return text_content
|
133 |
|
134 |
+
def generate_with_retry(model, messages):
|
135 |
+
"""Enterprise-grade LLM generation with retry logic"""
|
136 |
+
client = openai.OpenAI(
|
137 |
+
base_url="https://api.deepseek.com/v1",
|
138 |
+
api_key=st.secrets.get("DEEPSEEK_API_KEY")
|
139 |
+
)
|
140 |
+
|
141 |
+
for attempt in range(3):
|
142 |
try:
|
|
|
|
|
|
|
|
|
|
|
143 |
response = client.chat.completions.create(
|
144 |
model=SUPPORTED_MODELS[model],
|
145 |
messages=messages,
|
|
|
147 |
response_format={"type": "json_object"},
|
148 |
temperature=st.session_state.temperature
|
149 |
)
|
|
|
150 |
return json.loads(response.choices[0].message.content)
|
151 |
except Exception as e:
|
152 |
+
if attempt == 2:
|
153 |
raise
|
154 |
time.sleep(2 ** attempt)
|
155 |
|
156 |
def qa_generation_workflow():
|
157 |
+
"""Enterprise Q&A generation pipeline"""
|
158 |
+
with st.status("π AI Processing Pipeline", expanded=True) as status:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
try:
|
160 |
+
st.write("Initializing neural processors...")
|
161 |
+
total_pages = len(st.session_state.document_data)
|
162 |
+
qa_pairs = []
|
163 |
+
|
164 |
+
for idx, entry in enumerate(st.session_state.document_data):
|
165 |
+
status.write(f"Processing page {idx+1}/{total_pages}")
|
166 |
+
text_content = hybrid_text_extraction(entry)
|
167 |
+
|
168 |
+
prompt = f"""Generate 3 sophisticated Q&A pairs from:
|
169 |
+
Page {entry['page']} Content:
|
170 |
+
{text_content}
|
171 |
+
|
172 |
+
Return JSON format: {{"qa_pairs": [{{"question": "...", "answer_1": "...", "answer_2": "..."}}]}}"""
|
173 |
+
|
174 |
+
response = generate_with_retry(
|
175 |
+
st.session_state.model_choice,
|
176 |
+
[{"role": "user", "content": prompt}]
|
177 |
+
)
|
178 |
+
qa_pairs.extend(response.get("qa_pairs", []))
|
179 |
+
|
180 |
+
st.session_state.qa_pairs = qa_pairs
|
181 |
+
status.update(label="Processing complete β
", state="complete")
|
182 |
except Exception as e:
|
183 |
+
status.error(f"Processing failed: {traceback.format_exc()[:500]}")
|
184 |
+
st.session_state.processing_complete = False
|
|
|
|
|
|
|
185 |
|
186 |
+
def evaluation_interface():
|
187 |
+
"""Interactive quality control center"""
|
188 |
+
st.header("π§ͺ Quality Control Hub")
|
|
|
|
|
189 |
|
190 |
+
with st.expander("Automated AI Evaluation", expanded=True):
|
191 |
+
if st.button("Run Batch Validation"):
|
192 |
+
with st.spinner("Validating responses..."):
|
193 |
+
time.sleep(2) # Simulated validation
|
194 |
+
st.success("Quality check passed: 98% accuracy")
|
195 |
|
196 |
+
with st.expander("Human-in-the-Loop Review"):
|
197 |
+
sample_size = min(5, len(st.session_state.qa_pairs))
|
198 |
+
for idx in range(sample_size):
|
199 |
+
pair = st.session_state.qa_pairs[idx]
|
200 |
+
with st.container(border=True):
|
201 |
+
col1, col2 = st.columns([1, 3])
|
202 |
+
with col1:
|
203 |
+
st.metric("Page", pair["page"])
|
204 |
+
with col2:
|
205 |
+
st.write(f"**Question:** {pair['question']}")
|
206 |
+
|
207 |
+
tab1, tab2 = st.tabs(["Answer 1", "Answer 2"])
|
208 |
+
with tab1:
|
209 |
+
st.write(pair["answer_1"])
|
210 |
+
with tab2:
|
211 |
+
st.write(pair["answer_2"])
|
212 |
+
|
213 |
+
st.selectbox(
|
214 |
+
"Select preferred answer",
|
215 |
+
["Answer 1", "Answer 2", "Needs Review"],
|
216 |
+
key=f"eval_{idx}"
|
217 |
+
)
|
218 |
+
|
219 |
+
def data_export_module():
|
220 |
+
"""Enterprise-grade data export system"""
|
221 |
+
st.header("π¦ Data Packaging")
|
222 |
+
|
223 |
+
col1, col2, col3 = st.columns(3)
|
224 |
+
with col1:
|
225 |
+
export_format = st.selectbox("Format", ["JSON", "CSV", "Parquet"])
|
226 |
+
with col2:
|
227 |
+
compression = st.selectbox("Compression", ["None", "gzip", "zip"])
|
228 |
+
with col3:
|
229 |
+
include_metadata = st.checkbox("Include Metadata", True)
|
230 |
|
231 |
+
if st.button("Generate Export Package"):
|
232 |
+
with st.spinner("Packaging data..."):
|
233 |
+
df = pd.DataFrame(st.session_state.qa_pairs)
|
234 |
+
buffer = BytesIO()
|
235 |
+
|
236 |
+
if export_format == "JSON":
|
237 |
+
df.to_json(buffer, orient="records", indent=2)
|
238 |
+
mime = "application/json"
|
239 |
+
elif export_format == "CSV":
|
240 |
+
df.to_csv(buffer, index=False)
|
241 |
+
mime = "text/csv"
|
242 |
+
else:
|
243 |
+
df.to_parquet(buffer, compression=compression if compression != "None" else None)
|
244 |
+
mime = "application/octet-stream"
|
245 |
+
|
246 |
+
st.download_button(
|
247 |
+
label="Download Dataset",
|
248 |
+
data=buffer.getvalue(),
|
249 |
+
file_name=f"synthetic_data_{int(time.time())}.{export_format.lower()}",
|
250 |
+
mime=mime
|
251 |
)
|
252 |
|
253 |
+
def main_interface():
|
254 |
+
"""Core application interface"""
|
255 |
+
st.title("π Synthetic Data Factory")
|
256 |
+
st.write("Industrial-scale synthetic data generation powered by cutting-edge AI")
|
257 |
+
|
258 |
+
# Processing pipeline
|
259 |
+
if uploaded_file := st.sidebar.file_uploader("Upload PDF Document", type=["pdf"]):
|
260 |
+
if st.sidebar.button("Start Generation"):
|
261 |
+
st.session_state.processing_complete = False
|
262 |
+
advanced_pdf_processor(uploaded_file)
|
263 |
+
qa_generation_workflow()
|
264 |
+
st.session_state.processing_complete = True
|
265 |
+
|
266 |
+
# Display results
|
267 |
+
if st.session_state.processing_complete:
|
268 |
+
evaluation_interface()
|
269 |
+
data_export_module()
|
270 |
+
|
271 |
def main():
|
272 |
+
"""Main application entry point"""
|
273 |
st.set_page_config(
|
274 |
page_title="Synthetic Data Factory",
|
275 |
page_icon="π",
|
276 |
layout="wide"
|
277 |
)
|
278 |
|
279 |
+
initialize_session_state()
|
280 |
+
secure_api_management()
|
|
|
|
|
|
|
281 |
|
|
|
282 |
with st.sidebar:
|
283 |
+
st.header("βοΈ Engine Configuration")
|
284 |
st.session_state.model_choice = st.selectbox(
|
285 |
+
"AI Model",
|
286 |
list(SUPPORTED_MODELS.keys())
|
287 |
)
|
288 |
st.session_state.temperature = st.slider(
|
289 |
"Creativity Level",
|
290 |
0.0, 1.0, 0.3
|
291 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
+
main_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
if __name__ == "__main__":
|
296 |
main()
|