Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import json
|
2 |
import ast
|
|
|
3 |
import requests
|
4 |
import streamlit as st
|
5 |
import pdfplumber
|
@@ -7,6 +8,16 @@ import pandas as pd
|
|
7 |
import sqlalchemy
|
8 |
from typing import Any, Dict, List, Callable
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Provider clients – ensure these libraries are installed
|
11 |
try:
|
12 |
from openai import OpenAI
|
@@ -18,7 +29,7 @@ try:
|
|
18 |
except ImportError:
|
19 |
groq = None
|
20 |
|
21 |
-
#
|
22 |
HF_API_URL: str = "https://api-inference.huggingface.co/models/"
|
23 |
DEFAULT_TEMPERATURE: float = 0.1
|
24 |
GROQ_MODEL: str = "mixtral-8x7b-32768"
|
@@ -26,28 +37,27 @@ GROQ_MODEL: str = "mixtral-8x7b-32768"
|
|
26 |
|
27 |
class SyntheticDataGenerator:
|
28 |
"""
|
29 |
-
An advanced
|
30 |
|
31 |
-
|
32 |
-
|
33 |
"""
|
34 |
def __init__(self) -> None:
|
35 |
self._setup_providers()
|
36 |
self._setup_input_handlers()
|
37 |
self._initialize_session_state()
|
38 |
-
# Prompt template
|
39 |
self.custom_prompt_template: str = (
|
40 |
"You are an expert in generating synthetic training data for fine-tuning. "
|
41 |
"Generate {num_examples} training examples from the following data, formatted as a JSON list of dictionaries. "
|
42 |
"Each dictionary must have keys 'input' and 'output'. "
|
43 |
-
"The examples should be clear, diverse, and based solely on the provided data. "
|
44 |
-
"Do not add any external information. \n\n"
|
45 |
"Example JSON Output:\n"
|
46 |
"[{{'input': 'sample input text 1', 'output': 'sample output text 1'}}, "
|
47 |
"{{'input': 'sample input text 2', 'output': 'sample output text 2'}}]\n\n"
|
48 |
"Now, generate {num_examples} training examples from this data:\n{data}"
|
49 |
)
|
50 |
-
|
51 |
def _setup_providers(self) -> None:
|
52 |
"""Configure available LLM providers and their client initialization routines."""
|
53 |
self.providers: Dict[str, Dict[str, Any]] = {
|
@@ -68,9 +78,9 @@ class SyntheticDataGenerator:
|
|
68 |
"models": ["gpt2", "llama-2"],
|
69 |
},
|
70 |
}
|
71 |
-
|
72 |
def _setup_input_handlers(self) -> None:
|
73 |
-
"""Register handlers for
|
74 |
self.input_handlers: Dict[str, Callable[[Any], Dict[str, Any]]] = {
|
75 |
"text": self.handle_text,
|
76 |
"pdf": self.handle_pdf,
|
@@ -78,20 +88,23 @@ class SyntheticDataGenerator:
|
|
78 |
"api": self.handle_api,
|
79 |
"db": self.handle_db,
|
80 |
}
|
81 |
-
|
82 |
def _initialize_session_state(self) -> None:
|
83 |
-
"""
|
|
|
|
|
|
|
84 |
defaults: Dict[str, Any] = {
|
85 |
"config": {
|
86 |
"provider": "OpenAI",
|
87 |
"model": "gpt-4-turbo",
|
88 |
"temperature": DEFAULT_TEMPERATURE,
|
89 |
-
"num_examples": 3,
|
90 |
},
|
91 |
"api_key": "",
|
92 |
-
"inputs": [],
|
93 |
-
"synthetic_data": None,
|
94 |
-
"error_logs": [],
|
95 |
}
|
96 |
for key, value in defaults.items():
|
97 |
if key not in st.session_state:
|
@@ -113,18 +126,19 @@ class SyntheticDataGenerator:
|
|
113 |
st.session_state.config["num_examples"] = int(params["num_examples"][0])
|
114 |
except ValueError:
|
115 |
pass
|
116 |
-
|
117 |
def log_error(self, message: str) -> None:
|
118 |
-
"""Log an error message to
|
119 |
st.session_state.error_logs.append(message)
|
120 |
st.error(message)
|
121 |
-
|
|
|
122 |
# ----- Input Handlers -----
|
123 |
def handle_text(self, text: str) -> Dict[str, Any]:
|
124 |
-
"""
|
125 |
return {"data": text, "source": "text"}
|
126 |
-
|
127 |
-
def handle_pdf(self, file) -> Dict[str, Any]:
|
128 |
"""Extract text from a PDF file."""
|
129 |
try:
|
130 |
with pdfplumber.open(file) as pdf:
|
@@ -133,17 +147,16 @@ class SyntheticDataGenerator:
|
|
133 |
except Exception as e:
|
134 |
self.log_error(f"PDF Processing Error: {e}")
|
135 |
return {"data": "", "source": "pdf"}
|
136 |
-
|
137 |
-
def handle_csv(self, file) -> Dict[str, Any]:
|
138 |
-
"""Process
|
139 |
try:
|
140 |
df = pd.read_csv(file)
|
141 |
-
|
142 |
-
return {"data": json_data, "source": "csv"}
|
143 |
except Exception as e:
|
144 |
self.log_error(f"CSV Processing Error: {e}")
|
145 |
return {"data": "", "source": "csv"}
|
146 |
-
|
147 |
def handle_api(self, config: Dict[str, str]) -> Dict[str, Any]:
|
148 |
"""Fetch data from an API endpoint."""
|
149 |
try:
|
@@ -153,9 +166,9 @@ class SyntheticDataGenerator:
|
|
153 |
except Exception as e:
|
154 |
self.log_error(f"API Processing Error: {e}")
|
155 |
return {"data": "", "source": "api"}
|
156 |
-
|
157 |
def handle_db(self, config: Dict[str, str]) -> Dict[str, Any]:
|
158 |
-
"""Query a database using
|
159 |
try:
|
160 |
engine = sqlalchemy.create_engine(config["connection"])
|
161 |
with engine.connect() as conn:
|
@@ -165,19 +178,18 @@ class SyntheticDataGenerator:
|
|
165 |
except Exception as e:
|
166 |
self.log_error(f"Database Processing Error: {e}")
|
167 |
return {"data": "", "source": "db"}
|
168 |
-
|
169 |
def aggregate_inputs(self) -> str:
|
170 |
-
"""
|
171 |
-
|
172 |
for item in st.session_state.inputs:
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
def build_prompt(self) -> str:
|
178 |
"""
|
179 |
-
Build the complete prompt using the custom template, aggregated inputs,
|
180 |
-
and the number of examples.
|
181 |
"""
|
182 |
data = self.aggregate_inputs()
|
183 |
num_examples = st.session_state.config.get("num_examples", 3)
|
@@ -185,50 +197,52 @@ class SyntheticDataGenerator:
|
|
185 |
st.write("### Built Prompt")
|
186 |
st.write(prompt)
|
187 |
return prompt
|
188 |
-
|
189 |
def generate_synthetic_data(self) -> bool:
|
190 |
"""
|
191 |
-
Generate synthetic training examples by sending the
|
192 |
"""
|
193 |
api_key: str = st.session_state.api_key
|
194 |
if not api_key:
|
195 |
self.log_error("API key is missing!")
|
196 |
return False
|
197 |
-
|
198 |
provider_name: str = st.session_state.config["provider"]
|
199 |
provider_cfg: Dict[str, Any] = self.providers.get(provider_name, {})
|
200 |
if not provider_cfg:
|
201 |
self.log_error(f"Provider {provider_name} is not configured.")
|
202 |
return False
|
203 |
-
|
204 |
client_initializer: Callable[[str], Any] = provider_cfg["client"]
|
205 |
client = client_initializer(api_key)
|
206 |
model: str = st.session_state.config["model"]
|
207 |
temperature: float = st.session_state.config["temperature"]
|
208 |
prompt: str = self.build_prompt()
|
209 |
-
|
210 |
st.info(f"Using **{provider_name}** with model **{model}** at temperature **{temperature:.2f}**")
|
211 |
try:
|
212 |
if provider_name == "HuggingFace":
|
213 |
response = self._huggingface_inference(client, prompt, model)
|
214 |
else:
|
215 |
response = self._standard_inference(client, prompt, model, temperature)
|
216 |
-
|
217 |
st.write("### Raw API Response")
|
218 |
st.write(response)
|
219 |
-
|
220 |
synthetic_examples = self._parse_response(response, provider_name)
|
221 |
st.write("### Parsed Synthetic Data")
|
222 |
st.write(synthetic_examples)
|
223 |
-
|
224 |
st.session_state.synthetic_data = synthetic_examples
|
225 |
return True
|
226 |
except Exception as e:
|
227 |
self.log_error(f"Generation failed: {e}")
|
228 |
return False
|
229 |
-
|
230 |
def _standard_inference(self, client: Any, prompt: str, model: str, temperature: float) -> Any:
|
231 |
-
"""
|
|
|
|
|
232 |
try:
|
233 |
st.write("Sending prompt via standard inference...")
|
234 |
result = client.chat.completions.create(
|
@@ -241,9 +255,11 @@ class SyntheticDataGenerator:
|
|
241 |
except Exception as e:
|
242 |
self.log_error(f"Standard Inference Error: {e}")
|
243 |
return None
|
244 |
-
|
245 |
def _huggingface_inference(self, client: Dict[str, Any], prompt: str, model: str) -> Any:
|
246 |
-
"""
|
|
|
|
|
247 |
try:
|
248 |
st.write("Sending prompt to HuggingFace API...")
|
249 |
response = requests.post(
|
@@ -258,38 +274,39 @@ class SyntheticDataGenerator:
|
|
258 |
except Exception as e:
|
259 |
self.log_error(f"HuggingFace Inference Error: {e}")
|
260 |
return None
|
261 |
-
|
262 |
def _parse_response(self, response: Any, provider: str) -> List[Dict[str, str]]:
|
263 |
"""
|
264 |
Parse the LLM response and return a list of synthetic training examples.
|
265 |
-
|
266 |
-
uses ast.literal_eval as a fallback.
|
267 |
"""
|
268 |
st.write("Parsing response for provider:", provider)
|
269 |
try:
|
270 |
if provider == "HuggingFace":
|
|
|
271 |
if isinstance(response, list) and response and "generated_text" in response[0]:
|
272 |
raw_text = response[0]["generated_text"]
|
273 |
else:
|
274 |
self.log_error("Unexpected HuggingFace response format.")
|
275 |
return []
|
276 |
else:
|
|
|
277 |
if response and hasattr(response, "choices") and response.choices:
|
278 |
raw_text = response.choices[0].message.content
|
279 |
else:
|
280 |
self.log_error("Unexpected response format from provider.")
|
281 |
return []
|
282 |
-
|
283 |
try:
|
284 |
examples = json.loads(raw_text)
|
285 |
except json.JSONDecodeError as e:
|
286 |
-
self.log_error(f"JSON Parsing Error: {e}.
|
287 |
try:
|
288 |
examples = ast.literal_eval(raw_text)
|
289 |
except Exception as e2:
|
290 |
self.log_error(f"ast.literal_eval failed: {e2}")
|
291 |
return []
|
292 |
-
|
293 |
if isinstance(examples, list):
|
294 |
return examples
|
295 |
else:
|
@@ -300,41 +317,45 @@ class SyntheticDataGenerator:
|
|
300 |
return []
|
301 |
|
302 |
|
303 |
-
#
|
304 |
|
305 |
def config_ui(generator: SyntheticDataGenerator) -> None:
|
306 |
-
"""
|
|
|
|
|
|
|
307 |
with st.sidebar:
|
308 |
st.header("Configuration")
|
309 |
-
# Retrieve query parameters (if any)
|
310 |
params = st.experimental_get_query_params()
|
311 |
default_provider = params.get("provider", ["OpenAI"])[0]
|
312 |
default_model = params.get("model", ["gpt-4-turbo"])[0]
|
313 |
default_temperature = float(params.get("temperature", [DEFAULT_TEMPERATURE])[0])
|
314 |
default_num_examples = int(params.get("num_examples", [3])[0])
|
315 |
-
|
316 |
provider_options = list(generator.providers.keys())
|
317 |
-
provider = st.selectbox("Select Provider", provider_options,
|
318 |
-
index=provider_options.index(default_provider)
|
|
|
319 |
st.session_state.config["provider"] = provider
|
320 |
provider_cfg = generator.providers[provider]
|
321 |
-
|
322 |
model_options = provider_cfg["models"]
|
323 |
model = st.selectbox("Select Model", model_options,
|
324 |
-
index=model_options.index(default_model)
|
|
|
325 |
st.session_state.config["model"] = model
|
326 |
-
|
327 |
temperature = st.slider("Temperature", 0.0, 1.0, default_temperature)
|
328 |
st.session_state.config["temperature"] = temperature
|
329 |
-
|
330 |
-
num_examples = st.number_input("Number of Training Examples", min_value=1, max_value=10,
|
331 |
value=default_num_examples, step=1)
|
332 |
st.session_state.config["num_examples"] = num_examples
|
333 |
-
|
334 |
api_key = st.text_input(f"{provider} API Key", type="password")
|
335 |
st.session_state.api_key = api_key
|
336 |
-
|
337 |
-
# Update URL query parameters
|
338 |
st.set_query_params(
|
339 |
provider=st.session_state.config["provider"],
|
340 |
model=st.session_state.config["model"],
|
@@ -343,10 +364,10 @@ def config_ui(generator: SyntheticDataGenerator) -> None:
|
|
343 |
)
|
344 |
|
345 |
def input_ui(generator: SyntheticDataGenerator) -> None:
|
346 |
-
"""Display input data source options
|
347 |
st.subheader("Input Data Sources")
|
348 |
tabs = st.tabs(["Text", "PDF", "CSV", "API", "Database"])
|
349 |
-
|
350 |
with tabs[0]:
|
351 |
text_input = st.text_area("Enter text input", height=150)
|
352 |
if st.button("Add Text Input", key="text_input"):
|
@@ -355,19 +376,19 @@ def input_ui(generator: SyntheticDataGenerator) -> None:
|
|
355 |
st.success("Text input added!")
|
356 |
else:
|
357 |
st.warning("Empty text input.")
|
358 |
-
|
359 |
with tabs[1]:
|
360 |
pdf_file = st.file_uploader("Upload PDF", type=["pdf"])
|
361 |
if pdf_file is not None:
|
362 |
st.session_state.inputs.append(generator.handle_pdf(pdf_file))
|
363 |
st.success("PDF input added!")
|
364 |
-
|
365 |
with tabs[2]:
|
366 |
csv_file = st.file_uploader("Upload CSV", type=["csv"])
|
367 |
if csv_file is not None:
|
368 |
st.session_state.inputs.append(generator.handle_csv(csv_file))
|
369 |
st.success("CSV input added!")
|
370 |
-
|
371 |
with tabs[3]:
|
372 |
api_url = st.text_input("API Endpoint URL")
|
373 |
api_headers = st.text_area("API Headers (JSON format, optional)", height=100)
|
@@ -380,7 +401,7 @@ def input_ui(generator: SyntheticDataGenerator) -> None:
|
|
380 |
generator.log_error(f"Invalid JSON for API Headers: {e}")
|
381 |
st.session_state.inputs.append(generator.handle_api({"url": api_url, "headers": headers}))
|
382 |
st.success("API input added!")
|
383 |
-
|
384 |
with tabs[4]:
|
385 |
db_conn = st.text_input("Database Connection String")
|
386 |
db_query = st.text_area("Database Query", height=100)
|
@@ -389,12 +410,12 @@ def input_ui(generator: SyntheticDataGenerator) -> None:
|
|
389 |
st.success("Database input added!")
|
390 |
|
391 |
def output_ui(generator: SyntheticDataGenerator) -> None:
|
392 |
-
"""Display the generated synthetic data and
|
393 |
st.subheader("Synthetic Data Output")
|
394 |
if st.session_state.synthetic_data:
|
395 |
st.write("### Generated Training Examples")
|
396 |
st.write(st.session_state.synthetic_data)
|
397 |
-
|
398 |
# Download as JSON
|
399 |
st.download_button(
|
400 |
"Download as JSON",
|
@@ -402,7 +423,7 @@ def output_ui(generator: SyntheticDataGenerator) -> None:
|
|
402 |
file_name="synthetic_data.json",
|
403 |
mime="application/json"
|
404 |
)
|
405 |
-
|
406 |
# Download as CSV
|
407 |
try:
|
408 |
df = pd.DataFrame(st.session_state.synthetic_data)
|
@@ -419,7 +440,7 @@ def output_ui(generator: SyntheticDataGenerator) -> None:
|
|
419 |
st.info("No synthetic data generated yet.")
|
420 |
|
421 |
def logs_ui() -> None:
|
422 |
-
"""Display error logs and
|
423 |
with st.expander("Error Logs & Debug Info", expanded=False):
|
424 |
if st.session_state.error_logs:
|
425 |
for log in st.session_state.error_logs:
|
@@ -434,21 +455,20 @@ def main() -> None:
|
|
434 |
st.markdown(
|
435 |
"""
|
436 |
Welcome to the Advanced Synthetic Data Generator. This tool creates synthetic training examples
|
437 |
-
for fine-tuning models. Configure your provider in the sidebar, add input data, and
|
438 |
-
below to generate synthetic data.
|
439 |
"""
|
440 |
)
|
441 |
-
|
442 |
-
# Initialize generator and
|
443 |
generator = SyntheticDataGenerator()
|
444 |
config_ui(generator)
|
445 |
-
|
446 |
st.header("1. Input Data")
|
447 |
input_ui(generator)
|
448 |
if st.button("Clear All Inputs"):
|
449 |
st.session_state.inputs = []
|
450 |
st.success("All inputs have been cleared!")
|
451 |
-
|
452 |
st.header("2. Generate Synthetic Data")
|
453 |
if st.button("Generate Synthetic Data", key="generate_data"):
|
454 |
with st.spinner("Generating synthetic data..."):
|
@@ -456,10 +476,10 @@ def main() -> None:
|
|
456 |
st.success("Synthetic data generated successfully!")
|
457 |
else:
|
458 |
st.error("Data generation failed. Check logs for details.")
|
459 |
-
|
460 |
st.header("3. Output")
|
461 |
output_ui(generator)
|
462 |
-
|
463 |
st.header("4. Logs & Debug Information")
|
464 |
logs_ui()
|
465 |
|
|
|
1 |
import json
|
2 |
import ast
|
3 |
+
import logging
|
4 |
import requests
|
5 |
import streamlit as st
|
6 |
import pdfplumber
|
|
|
8 |
import sqlalchemy
|
9 |
from typing import Any, Dict, List, Callable
|
10 |
|
11 |
+
# Configure Python logging for production diagnostics.
|
12 |
+
logger = logging.getLogger("SyntheticDataGenerator")
|
13 |
+
logger.setLevel(logging.INFO)
|
14 |
+
if not logger.handlers:
|
15 |
+
handler = logging.StreamHandler()
|
16 |
+
handler.setLevel(logging.INFO)
|
17 |
+
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
18 |
+
handler.setFormatter(formatter)
|
19 |
+
logger.addHandler(handler)
|
20 |
+
|
21 |
# Provider clients – ensure these libraries are installed
|
22 |
try:
|
23 |
from openai import OpenAI
|
|
|
29 |
except ImportError:
|
30 |
groq = None
|
31 |
|
32 |
+
# Constants for external APIs
|
33 |
HF_API_URL: str = "https://api-inference.huggingface.co/models/"
|
34 |
DEFAULT_TEMPERATURE: float = 0.1
|
35 |
GROQ_MODEL: str = "mixtral-8x7b-32768"
|
|
|
37 |
|
38 |
class SyntheticDataGenerator:
|
39 |
"""
|
40 |
+
An advanced synthetic data generator for creating fine-tuning training examples.
|
41 |
|
42 |
+
This generator uses various input sources and an LLM provider to create synthetic data.
|
43 |
+
Each generated example is a dictionary with 'input' and 'output' keys.
|
44 |
"""
|
45 |
def __init__(self) -> None:
|
46 |
self._setup_providers()
|
47 |
self._setup_input_handlers()
|
48 |
self._initialize_session_state()
|
49 |
+
# Prompt template: note the use of escaped curly braces so that literal braces are kept.
|
50 |
self.custom_prompt_template: str = (
|
51 |
"You are an expert in generating synthetic training data for fine-tuning. "
|
52 |
"Generate {num_examples} training examples from the following data, formatted as a JSON list of dictionaries. "
|
53 |
"Each dictionary must have keys 'input' and 'output'. "
|
54 |
+
"The examples should be clear, diverse, and based solely on the provided data. Do not add any external information.\n\n"
|
|
|
55 |
"Example JSON Output:\n"
|
56 |
"[{{'input': 'sample input text 1', 'output': 'sample output text 1'}}, "
|
57 |
"{{'input': 'sample input text 2', 'output': 'sample output text 2'}}]\n\n"
|
58 |
"Now, generate {num_examples} training examples from this data:\n{data}"
|
59 |
)
|
60 |
+
|
61 |
def _setup_providers(self) -> None:
|
62 |
"""Configure available LLM providers and their client initialization routines."""
|
63 |
self.providers: Dict[str, Dict[str, Any]] = {
|
|
|
78 |
"models": ["gpt2", "llama-2"],
|
79 |
},
|
80 |
}
|
81 |
+
|
82 |
def _setup_input_handlers(self) -> None:
|
83 |
+
"""Register input handlers for various data types."""
|
84 |
self.input_handlers: Dict[str, Callable[[Any], Dict[str, Any]]] = {
|
85 |
"text": self.handle_text,
|
86 |
"pdf": self.handle_pdf,
|
|
|
88 |
"api": self.handle_api,
|
89 |
"db": self.handle_db,
|
90 |
}
|
91 |
+
|
92 |
def _initialize_session_state(self) -> None:
|
93 |
+
"""
|
94 |
+
Initialize the Streamlit session state with default configuration.
|
95 |
+
Also pre-populate configuration from URL query parameters.
|
96 |
+
"""
|
97 |
defaults: Dict[str, Any] = {
|
98 |
"config": {
|
99 |
"provider": "OpenAI",
|
100 |
"model": "gpt-4-turbo",
|
101 |
"temperature": DEFAULT_TEMPERATURE,
|
102 |
+
"num_examples": 3,
|
103 |
},
|
104 |
"api_key": "",
|
105 |
+
"inputs": [], # List to store input sources
|
106 |
+
"synthetic_data": None, # Generated synthetic training examples
|
107 |
+
"error_logs": [], # To store error messages
|
108 |
}
|
109 |
for key, value in defaults.items():
|
110 |
if key not in st.session_state:
|
|
|
126 |
st.session_state.config["num_examples"] = int(params["num_examples"][0])
|
127 |
except ValueError:
|
128 |
pass
|
129 |
+
|
130 |
def log_error(self, message: str) -> None:
|
131 |
+
"""Log an error message to both Streamlit and the production logger."""
|
132 |
st.session_state.error_logs.append(message)
|
133 |
st.error(message)
|
134 |
+
logger.error(message)
|
135 |
+
|
136 |
# ----- Input Handlers -----
|
137 |
def handle_text(self, text: str) -> Dict[str, Any]:
|
138 |
+
"""Return plain text input."""
|
139 |
return {"data": text, "source": "text"}
|
140 |
+
|
141 |
+
def handle_pdf(self, file: Any) -> Dict[str, Any]:
|
142 |
"""Extract text from a PDF file."""
|
143 |
try:
|
144 |
with pdfplumber.open(file) as pdf:
|
|
|
147 |
except Exception as e:
|
148 |
self.log_error(f"PDF Processing Error: {e}")
|
149 |
return {"data": "", "source": "pdf"}
|
150 |
+
|
151 |
+
def handle_csv(self, file: Any) -> Dict[str, Any]:
|
152 |
+
"""Process CSV file by converting it to JSON."""
|
153 |
try:
|
154 |
df = pd.read_csv(file)
|
155 |
+
return {"data": df.to_json(orient="records"), "source": "csv"}
|
|
|
156 |
except Exception as e:
|
157 |
self.log_error(f"CSV Processing Error: {e}")
|
158 |
return {"data": "", "source": "csv"}
|
159 |
+
|
160 |
def handle_api(self, config: Dict[str, str]) -> Dict[str, Any]:
|
161 |
"""Fetch data from an API endpoint."""
|
162 |
try:
|
|
|
166 |
except Exception as e:
|
167 |
self.log_error(f"API Processing Error: {e}")
|
168 |
return {"data": "", "source": "api"}
|
169 |
+
|
170 |
def handle_db(self, config: Dict[str, str]) -> Dict[str, Any]:
|
171 |
+
"""Query a database using a connection string and SQL query."""
|
172 |
try:
|
173 |
engine = sqlalchemy.create_engine(config["connection"])
|
174 |
with engine.connect() as conn:
|
|
|
178 |
except Exception as e:
|
179 |
self.log_error(f"Database Processing Error: {e}")
|
180 |
return {"data": "", "source": "db"}
|
181 |
+
|
182 |
def aggregate_inputs(self) -> str:
|
183 |
+
"""Aggregate all input data sources into a single string."""
|
184 |
+
aggregated = ""
|
185 |
for item in st.session_state.inputs:
|
186 |
+
aggregated += f"Source: {item.get('source', 'unknown')}\n{item.get('data', '')}\n\n"
|
187 |
+
return aggregated.strip()
|
188 |
+
|
|
|
189 |
def build_prompt(self) -> str:
|
190 |
"""
|
191 |
+
Build the complete prompt using the custom template, aggregated inputs,
|
192 |
+
and the configured number of examples.
|
193 |
"""
|
194 |
data = self.aggregate_inputs()
|
195 |
num_examples = st.session_state.config.get("num_examples", 3)
|
|
|
197 |
st.write("### Built Prompt")
|
198 |
st.write(prompt)
|
199 |
return prompt
|
200 |
+
|
201 |
def generate_synthetic_data(self) -> bool:
|
202 |
"""
|
203 |
+
Generate synthetic training examples by sending the prompt to the selected LLM provider.
|
204 |
"""
|
205 |
api_key: str = st.session_state.api_key
|
206 |
if not api_key:
|
207 |
self.log_error("API key is missing!")
|
208 |
return False
|
209 |
+
|
210 |
provider_name: str = st.session_state.config["provider"]
|
211 |
provider_cfg: Dict[str, Any] = self.providers.get(provider_name, {})
|
212 |
if not provider_cfg:
|
213 |
self.log_error(f"Provider {provider_name} is not configured.")
|
214 |
return False
|
215 |
+
|
216 |
client_initializer: Callable[[str], Any] = provider_cfg["client"]
|
217 |
client = client_initializer(api_key)
|
218 |
model: str = st.session_state.config["model"]
|
219 |
temperature: float = st.session_state.config["temperature"]
|
220 |
prompt: str = self.build_prompt()
|
221 |
+
|
222 |
st.info(f"Using **{provider_name}** with model **{model}** at temperature **{temperature:.2f}**")
|
223 |
try:
|
224 |
if provider_name == "HuggingFace":
|
225 |
response = self._huggingface_inference(client, prompt, model)
|
226 |
else:
|
227 |
response = self._standard_inference(client, prompt, model, temperature)
|
228 |
+
|
229 |
st.write("### Raw API Response")
|
230 |
st.write(response)
|
231 |
+
|
232 |
synthetic_examples = self._parse_response(response, provider_name)
|
233 |
st.write("### Parsed Synthetic Data")
|
234 |
st.write(synthetic_examples)
|
235 |
+
|
236 |
st.session_state.synthetic_data = synthetic_examples
|
237 |
return True
|
238 |
except Exception as e:
|
239 |
self.log_error(f"Generation failed: {e}")
|
240 |
return False
|
241 |
+
|
242 |
def _standard_inference(self, client: Any, prompt: str, model: str, temperature: float) -> Any:
|
243 |
+
"""
|
244 |
+
Inference method for providers with an OpenAI-compatible API.
|
245 |
+
"""
|
246 |
try:
|
247 |
st.write("Sending prompt via standard inference...")
|
248 |
result = client.chat.completions.create(
|
|
|
255 |
except Exception as e:
|
256 |
self.log_error(f"Standard Inference Error: {e}")
|
257 |
return None
|
258 |
+
|
259 |
def _huggingface_inference(self, client: Dict[str, Any], prompt: str, model: str) -> Any:
|
260 |
+
"""
|
261 |
+
Inference method for the Hugging Face Inference API.
|
262 |
+
"""
|
263 |
try:
|
264 |
st.write("Sending prompt to HuggingFace API...")
|
265 |
response = requests.post(
|
|
|
274 |
except Exception as e:
|
275 |
self.log_error(f"HuggingFace Inference Error: {e}")
|
276 |
return None
|
277 |
+
|
278 |
def _parse_response(self, response: Any, provider: str) -> List[Dict[str, str]]:
|
279 |
"""
|
280 |
Parse the LLM response and return a list of synthetic training examples.
|
281 |
+
Attempts JSON decoding first and falls back to ast.literal_eval.
|
|
|
282 |
"""
|
283 |
st.write("Parsing response for provider:", provider)
|
284 |
try:
|
285 |
if provider == "HuggingFace":
|
286 |
+
# Expect response to be a list with a key "generated_text"
|
287 |
if isinstance(response, list) and response and "generated_text" in response[0]:
|
288 |
raw_text = response[0]["generated_text"]
|
289 |
else:
|
290 |
self.log_error("Unexpected HuggingFace response format.")
|
291 |
return []
|
292 |
else:
|
293 |
+
# For OpenAI/Groq, look for choices[0].message.content
|
294 |
if response and hasattr(response, "choices") and response.choices:
|
295 |
raw_text = response.choices[0].message.content
|
296 |
else:
|
297 |
self.log_error("Unexpected response format from provider.")
|
298 |
return []
|
299 |
+
|
300 |
try:
|
301 |
examples = json.loads(raw_text)
|
302 |
except json.JSONDecodeError as e:
|
303 |
+
self.log_error(f"JSON Parsing Error: {e}. Fallback with ast.literal_eval. Raw output: {raw_text}")
|
304 |
try:
|
305 |
examples = ast.literal_eval(raw_text)
|
306 |
except Exception as e2:
|
307 |
self.log_error(f"ast.literal_eval failed: {e2}")
|
308 |
return []
|
309 |
+
|
310 |
if isinstance(examples, list):
|
311 |
return examples
|
312 |
else:
|
|
|
317 |
return []
|
318 |
|
319 |
|
320 |
+
# =================== UI Components ===================
|
321 |
|
322 |
def config_ui(generator: SyntheticDataGenerator) -> None:
|
323 |
+
"""
|
324 |
+
Display configuration options in the sidebar.
|
325 |
+
Updates URL query parameters using st.set_query_params.
|
326 |
+
"""
|
327 |
with st.sidebar:
|
328 |
st.header("Configuration")
|
|
|
329 |
params = st.experimental_get_query_params()
|
330 |
default_provider = params.get("provider", ["OpenAI"])[0]
|
331 |
default_model = params.get("model", ["gpt-4-turbo"])[0]
|
332 |
default_temperature = float(params.get("temperature", [DEFAULT_TEMPERATURE])[0])
|
333 |
default_num_examples = int(params.get("num_examples", [3])[0])
|
334 |
+
|
335 |
provider_options = list(generator.providers.keys())
|
336 |
+
provider = st.selectbox("Select Provider", provider_options,
|
337 |
+
index=provider_options.index(default_provider)
|
338 |
+
if default_provider in provider_options else 0)
|
339 |
st.session_state.config["provider"] = provider
|
340 |
provider_cfg = generator.providers[provider]
|
341 |
+
|
342 |
model_options = provider_cfg["models"]
|
343 |
model = st.selectbox("Select Model", model_options,
|
344 |
+
index=model_options.index(default_model)
|
345 |
+
if default_model in model_options else 0)
|
346 |
st.session_state.config["model"] = model
|
347 |
+
|
348 |
temperature = st.slider("Temperature", 0.0, 1.0, default_temperature)
|
349 |
st.session_state.config["temperature"] = temperature
|
350 |
+
|
351 |
+
num_examples = st.number_input("Number of Training Examples", min_value=1, max_value=10,
|
352 |
value=default_num_examples, step=1)
|
353 |
st.session_state.config["num_examples"] = num_examples
|
354 |
+
|
355 |
api_key = st.text_input(f"{provider} API Key", type="password")
|
356 |
st.session_state.api_key = api_key
|
357 |
+
|
358 |
+
# Update URL query parameters (shareable configuration)
|
359 |
st.set_query_params(
|
360 |
provider=st.session_state.config["provider"],
|
361 |
model=st.session_state.config["model"],
|
|
|
364 |
)
|
365 |
|
366 |
def input_ui(generator: SyntheticDataGenerator) -> None:
|
367 |
+
"""Display input data source options in tabs."""
|
368 |
st.subheader("Input Data Sources")
|
369 |
tabs = st.tabs(["Text", "PDF", "CSV", "API", "Database"])
|
370 |
+
|
371 |
with tabs[0]:
|
372 |
text_input = st.text_area("Enter text input", height=150)
|
373 |
if st.button("Add Text Input", key="text_input"):
|
|
|
376 |
st.success("Text input added!")
|
377 |
else:
|
378 |
st.warning("Empty text input.")
|
379 |
+
|
380 |
with tabs[1]:
|
381 |
pdf_file = st.file_uploader("Upload PDF", type=["pdf"])
|
382 |
if pdf_file is not None:
|
383 |
st.session_state.inputs.append(generator.handle_pdf(pdf_file))
|
384 |
st.success("PDF input added!")
|
385 |
+
|
386 |
with tabs[2]:
|
387 |
csv_file = st.file_uploader("Upload CSV", type=["csv"])
|
388 |
if csv_file is not None:
|
389 |
st.session_state.inputs.append(generator.handle_csv(csv_file))
|
390 |
st.success("CSV input added!")
|
391 |
+
|
392 |
with tabs[3]:
|
393 |
api_url = st.text_input("API Endpoint URL")
|
394 |
api_headers = st.text_area("API Headers (JSON format, optional)", height=100)
|
|
|
401 |
generator.log_error(f"Invalid JSON for API Headers: {e}")
|
402 |
st.session_state.inputs.append(generator.handle_api({"url": api_url, "headers": headers}))
|
403 |
st.success("API input added!")
|
404 |
+
|
405 |
with tabs[4]:
|
406 |
db_conn = st.text_input("Database Connection String")
|
407 |
db_query = st.text_area("Database Query", height=100)
|
|
|
410 |
st.success("Database input added!")
|
411 |
|
412 |
def output_ui(generator: SyntheticDataGenerator) -> None:
|
413 |
+
"""Display the generated synthetic data and download options (JSON and CSV)."""
|
414 |
st.subheader("Synthetic Data Output")
|
415 |
if st.session_state.synthetic_data:
|
416 |
st.write("### Generated Training Examples")
|
417 |
st.write(st.session_state.synthetic_data)
|
418 |
+
|
419 |
# Download as JSON
|
420 |
st.download_button(
|
421 |
"Download as JSON",
|
|
|
423 |
file_name="synthetic_data.json",
|
424 |
mime="application/json"
|
425 |
)
|
426 |
+
|
427 |
# Download as CSV
|
428 |
try:
|
429 |
df = pd.DataFrame(st.session_state.synthetic_data)
|
|
|
440 |
st.info("No synthetic data generated yet.")
|
441 |
|
442 |
def logs_ui() -> None:
|
443 |
+
"""Display error logs and debug information in an expandable section."""
|
444 |
with st.expander("Error Logs & Debug Info", expanded=False):
|
445 |
if st.session_state.error_logs:
|
446 |
for log in st.session_state.error_logs:
|
|
|
455 |
st.markdown(
|
456 |
"""
|
457 |
Welcome to the Advanced Synthetic Data Generator. This tool creates synthetic training examples
|
458 |
+
for fine-tuning models. Configure your provider in the sidebar, add input data, and generate synthetic data.
|
|
|
459 |
"""
|
460 |
)
|
461 |
+
|
462 |
+
# Initialize generator and UI
|
463 |
generator = SyntheticDataGenerator()
|
464 |
config_ui(generator)
|
465 |
+
|
466 |
st.header("1. Input Data")
|
467 |
input_ui(generator)
|
468 |
if st.button("Clear All Inputs"):
|
469 |
st.session_state.inputs = []
|
470 |
st.success("All inputs have been cleared!")
|
471 |
+
|
472 |
st.header("2. Generate Synthetic Data")
|
473 |
if st.button("Generate Synthetic Data", key="generate_data"):
|
474 |
with st.spinner("Generating synthetic data..."):
|
|
|
476 |
st.success("Synthetic data generated successfully!")
|
477 |
else:
|
478 |
st.error("Data generation failed. Check logs for details.")
|
479 |
+
|
480 |
st.header("3. Output")
|
481 |
output_ui(generator)
|
482 |
+
|
483 |
st.header("4. Logs & Debug Information")
|
484 |
logs_ui()
|
485 |
|