Spaces:
Runtime error
Runtime error
File size: 4,607 Bytes
34fbcfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
import pandas as pd
import requests
import emoji
import re
API_URL = "https://api-inference.huggingface.co/models/Dabid/test2"
headers = {"Authorization": "Bearer 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"}
profanities = ['bobo', 'bobong', 'bwiset', 'bwisit', 'buwisit', 'buwiset', 'bwesit', 'gago', 'gagong', 'kupal',
'pakshet', 'pakyu', 'pucha', 'puchang',
'punyeta', 'punyetang', 'puta', 'putang', 'putangina', 'putanginang', 'tanga', 'tangang', 'tangina',
'tanginang', 'tarantado', 'tarantadong', 'ulol']
contractions = {
'di': 'hindi',
'to': 'ito',
'no': 'ano',
'kundi': 'kung hindi',
'nya': 'niya',
'nyo': 'ninyo',
'niyo': 'ninyo',
'pano': 'paano',
'sainyo': 'sa inyo',
'sayo': 'sa iyo',
'pag': 'kapag',
'kesa': 'kaysa',
'dun': 'doon',
'ganto': 'ganito',
'nandun': 'nandoon',
'saka': 'tsaka',
'ung': 'yung',
'wag': 'huwag',
'sya': 'siya',
'bat': 'bakit',
'yon': 'iyon',
'yun': 'iyon',
'dyan': 'diyan',
'jan': 'diyan',
'andito': 'nandito',
'tanginamo': 'tangina mo',
'putanginamo': 'putangina mo',
'san': 'saan',
'ganun': 'ganoon',
'gagong': 'gago na',
'bobong': 'bobo na',
'tangang': 'tanga na',
'kelan': 'kailan',
'raw': 'daw',
'tanginang': 'tangina na',
'tarantadong': 'tarantado na',
'putang ina': 'putangina',
'putang inang': 'putangina',
'putanginang': 'putangina',
'itong': 'ito ang',
'lng': 'lang',
'bwisit': 'bwiset',
'bwesit': 'bwiset',
'buwisit': 'bwiset',
'buwesit': 'bwiset'
}
def preprocess(row):
laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha']
symbols = ['@', '#']
# Lowercase
row = row.lower()
# Remove emojis
row = emoji.replace_emoji(row, replace='')
# Replace elongated words 'grabeee' -> 'grabe' (not applicable on 2 corresponding letter)
row = re.sub(r'(.)\1{2,}', r'\1', row)
# Split sentence into list of words
row_split = row.split()
for index, word in enumerate(row_split):
# Remove words with symbols (e.g. @username, #hashtags)
if any(x in word for x in symbols):
row_split[index] = ''
# Remove links
if 'http' in word:
row_split[index] = ''
# Unify laugh texts format to 'haha'
if any(x in word for x in laugh_texts):
row_split[index] = 'haha'
# Remove words with digits (4ever)
if any(x.isdigit() for x in word):
row_split[index] = ''
# Combine list of words back to sentence
combined_text = ' '.join(filter(None, row_split))
# Check if output contains single word then return null
if len(combined_text.split()) == 1:
return combined_text
# Filter needed characters
combined_text = re.sub(r"[^A-Za-z ]+", '', combined_text)
# Expand Contractions
for i in contractions.items():
combined_text = re.sub(rf"\b{i[0]}\b", i[1], combined_text)
return combined_text
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def predict(text):
print(preprocess(text))
output = query(preprocess(text))[0]
print(output)
output = [tuple(i.values()) for i in output]
output = dict((x, y) for x, y in output)
predicted_label = list(output.keys())[0]
if predicted_label == 'Abusive':
output_text = text
for i in profanities:
compiled = re.compile(re.escape(i), re.IGNORECASE)
output_text = compiled.sub('****', output_text)
return output, output_text
else:
return output, text
hf_writer = gr.HuggingFaceDatasetSaver('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', 'tagalog-profanity-feedbacks')
demo = gr.Interface(
fn=predict,
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')],
outputs=[gr.components.Label(num_top_classes=2, label="PREDICTION"),
gr.components.Text(label='OUTPUT')],
examples=['Tangina mo naman sobrang yabang mo gago!!๐ ๐ค @davidrafael',
'Napakainit ngayong araw pakshet namaaan!!',
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO',
'Bobo ka ba? napakadali lang nyan eh... ๐คก',
'Uy gago laptrip yung nangyare samen kanina HAHAHA๐๐'],
allow_flagging="manual",
flagging_callback=hf_writer,
flagging_options=['Good bot', 'Bad bot']
)
demo.launch(debug=True)
|