Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import emoji | |
import re | |
import json | |
from thefuzz import process, fuzz | |
import numpy as np | |
import re | |
import nltk | |
from english_words import get_english_words_set | |
API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection" | |
headers = {"Authorization": "Bearer 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"} | |
def query(text): | |
payload = {"inputs": text} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
def read_text(filename, filetype='txt'): | |
words = [] | |
if filetype == 'txt': | |
with open(filename + '.txt') as file: | |
words = [line.rstrip() for line in file] | |
words = list(set(words)) | |
elif filetype == 'json': | |
with open(filename + '.json') as json_file: | |
words = json.load(json_file) | |
return words | |
contractions = read_text('contractions', 'json') | |
similar_words = read_text('similar_words') | |
addon_words = read_text('addon_words') | |
profanities_dict = read_text('profanities', 'json') | |
lookup_profanity = np.concatenate([np.hstack(list(profanities_dict.values())), list(profanities_dict.keys())]).tolist() | |
lookup_words = list(set(similar_words).union(set(lookup_profanity))) | |
eng_words = list(get_english_words_set(['web2'], lower=True) - set(lookup_profanity)) | |
punctuations = re.compile(r'^[^\w#@]+|[^\w#@]+$') | |
def fuzzy_lookup(tweet): | |
matched_profanity = dict() | |
for word in tweet.split(): | |
if word in eng_words: | |
continue | |
scores = [] | |
matched_words = [] | |
matched_word = None | |
# Remove trailing punctuations except # and @ | |
word = punctuations.sub('', word).lower() | |
# Save base word | |
base_word = word | |
# Shortent elongated word | |
word = re.sub(r'(.)\1{2,}', r'\1', word) | |
# Remove # and @ | |
if word.startswith("#") or word.startswith("@"): | |
word = word[1:] | |
# Remove trailing words (mo, ka, pinaka) | |
for addon in addon_words: | |
if word.startswith(addon): | |
word = word[len(addon):] | |
if word.endswith(addon): | |
word = word[:-len(addon)] | |
if len(word) < 4: | |
continue | |
# Get fuzzy ratio | |
for lookup_word in lookup_words: | |
score = fuzz.ratio(word, lookup_word) | |
# Threshold | |
if score >= 70: | |
scores.append(score) | |
matched_words.append(lookup_word) | |
if len(scores) == 0: | |
continue | |
if len(set(scores)) == 1: | |
for matched_word in matched_words: | |
if matched_word in lookup_profanity: | |
matched_word = matched_word | |
break | |
else: | |
# Get matched word with max score | |
max_score_index = np.argmax(scores) | |
matched_word = matched_words[max_score_index] | |
if matched_word not in lookup_profanity: | |
continue | |
for base_profanity, profanity_variations in profanities_dict.items(): | |
if matched_word in profanity_variations or matched_word == base_profanity: | |
# Seperate pronouns | |
for addon in addon_words: | |
if base_word.endswith(addon): | |
base_profanity = base_profanity + " " + addon | |
break | |
matched_profanity[base_word] = base_profanity | |
break | |
return matched_profanity | |
def preprocess(tweet, profanities): | |
tweet = tweet.lower() | |
tweet = emoji.replace_emoji(tweet, replace='') | |
# Replace profanities | |
for base_word, matched_word in profanities.items(): | |
tweet = tweet.replace(base_word, matched_word) | |
# Elongated words conversion | |
tweet = re.sub(r'(.)\1{2,}', r'\1', tweet) | |
row_split = tweet.split() | |
for index, word in enumerate(row_split): | |
# Remove links | |
if 'http' in word: | |
row_split[index] = '' | |
# Unify laugh texts format to 'haha' | |
laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha'] | |
if any(x in word for x in laugh_texts): | |
row_split[index] = 'haha' | |
# Combine list of words back to sentence | |
preprocessed_tweet = ' '.join(filter(None, row_split)) | |
if len(preprocessed_tweet.split()) == 1: | |
return preprocessed_tweet | |
# Expand Contractions | |
for i in contractions.items(): | |
preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet) | |
return preprocessed_tweet | |
def predict(tweet): | |
profanities = fuzzy_lookup(tweet) | |
if len(profanities) > 0: | |
preprocessed_tweet = preprocess(tweet, profanities) | |
prediction = query(preprocessed_tweet) | |
if type(prediction) == dict: | |
print(prediction) | |
error_message = prediction['error'] | |
return error_message, {} | |
prediction = prediction[0][0]["label"] | |
print("\nTWEET:", tweet) | |
print("PROCESSED TWEET:", preprocessed_tweet) | |
print("DETECTED PROFANITY:", list(profanities.keys())) | |
print("LABEL:", prediction, "\n") | |
return prediction, list(profanities.keys()) | |
return "No Profanity", {} | |
demo = gr.Interface( | |
fn=predict, | |
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')], | |
outputs=[gr.components.Text(label="PREDICTION"), gr.JSON(label="PROFANITIES")], | |
examples=['Tangina mo naman sobrang yabang mo gago!!๐ ๐ค @davidrafael', | |
'Napakainit ngayong araw pakshet namaaan!!', | |
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO', | |
'Bobo ka ba? napakadali lang nyan eh... ๐คก', | |
'Uy gago laptrip yung nangyare samen kanina HAHAHA๐๐'], | |
allow_flagging="never", | |
title="Tagalog Profanity Classifier" | |
) | |
demo.launch(debug=True) | |