mginoben's picture
Modified app.py
4e90ce5
raw
history blame
5.58 kB
import gradio as gr
import requests
import emoji
import re
import json
from thefuzz import process, fuzz
import numpy as np
import re
import nltk
nltk.download('words')
from nltk.corpus import words
API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection"
headers = {"Authorization": "Bearer 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"}
def query(text):
payload = {"inputs": text}
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def read_text(filename, filetype='txt'):
words = []
if filetype == 'txt':
with open(filename + '.txt') as file:
words = [line.rstrip() for line in file]
words = list(set(words))
elif filetype == 'json':
with open(filename + '.json') as json_file:
words = json.load(json_file)
return words
contractions = read_text('contractions', 'json')
similar_words = read_text('similar_words')
addon_words = read_text('addon_words')
profanities = read_text('profanities', 'json')
lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())])
lookup_words = list(set(similar_words).union(set(lookup_profanity.tolist())))
eng_words = list(set(words.words()) - set(lookup_profanity))
punctuations = re.compile(r'^[^\w#@]+|[^\w#@]+$')
# TODO check eng words that are tagalog profanities
def fuzzy_lookup(tweet):
matched_profanity = dict()
# tweet = punctuations.sub('', tweet).lower()
for word in tweet.split():
word = punctuations.sub('', word).lower()
base_word = word
word = re.sub(r'(.)\1{2,}', r'\1', word)
if word in eng_words:
continue
for addon in addon_words:
if word.startswith(addon):
word = word[len(addon):]
if word.endswith(addon):
word = word[:-len(addon)]
if word.startswith("@") or word.startswith("#"):
word = word[1:]
scores = []
matched_words = []
if len(word) >= 4:
# Get fuzzy ratio
for lookup_word in lookup_words:
score = fuzz.ratio(word, lookup_word)
if score >= 70:
scores.append(score)
matched_words.append(lookup_word)
if len(scores) > 0:
max_score_index = np.argmax(scores)
if matched_words[max_score_index] in lookup_profanity:
for base_profanity, profanity_variations in profanities.items():
if matched_words[max_score_index] == base_profanity:
matched_profanity[base_word] = base_profanity
break
if matched_words[max_score_index] in profanity_variations:
matched_profanity[base_word] = base_profanity
break
return matched_profanity
def preprocess(tweet, profanities):
tweet = tweet.lower()
tweet = emoji.replace_emoji(tweet, replace='')
# Replace profanities
for base_word, matched_word in profanities.items():
tweet = tweet.replace(base_word, matched_word)
# Elongated words conversion
tweet = re.sub(r'(.)\1{2,}', r'\1', tweet)
row_split = tweet.split()
for index, word in enumerate(row_split):
# Seperate pronouns
for addon in addon_words:
if word.endswith(addon):
row_split[index] = word[:-len(addon)] + " " + addon
# Remove links
if 'http' in word:
row_split[index] = ''
# Unify laugh texts format to 'haha'
laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha']
if any(x in word for x in laugh_texts):
row_split[index] = 'haha'
# Combine list of words back to sentence
preprocessed_tweet = ' '.join(filter(None, row_split))
if len(preprocessed_tweet.split()) == 1:
return preprocessed_tweet
# Expand Contractions
for i in contractions.items():
preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet)
return preprocessed_tweet
def predict(tweet):
profanities = fuzzy_lookup(tweet)
if len(profanities) > 0:
preprocessed_tweet = preprocess(tweet, profanities)
prediction = query(preprocessed_tweet)
if type(prediction) == dict:
print(prediction)
error_message = prediction['error']
return error_message, {}
prediction = prediction[0][0]["label"]
print("\nTWEET:", tweet)
print("DETECTED PROFANITY:", list(profanities.keys()))
print("LABEL:", prediction, "\n")
return prediction, list(profanities.keys())
return "No Profanity", {}
demo = gr.Interface(
fn=predict,
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')],
outputs=[gr.components.Text(label="PREDICTION"), gr.JSON(label="PROFANITIES")],
examples=['Tangina mo naman sobrang yabang mo gago!!๐Ÿ˜ ๐Ÿ˜ค @davidrafael',
'Napakainit ngayong araw pakshet namaaan!!',
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO',
'Bobo ka ba? napakadali lang nyan eh... ๐Ÿคก',
'Uy gago laptrip yung nangyare samen kanina HAHAHA๐Ÿ˜‚๐Ÿ˜‚'],
allow_flagging="never",
title="Tagalog Profanity Classifier"
)
demo.launch(debug=True)