Spaces:
Runtime error
Runtime error
Reprogrammed app.
Browse files
app.py
CHANGED
@@ -9,8 +9,8 @@ import re
|
|
9 |
from string import punctuation
|
10 |
|
11 |
|
12 |
-
API_URL = "https://api-inference.huggingface.co/models/Dabid/
|
13 |
-
headers = {"Authorization": "Bearer
|
14 |
|
15 |
def read_text(filename, filetype='txt'):
|
16 |
words = []
|
@@ -31,20 +31,34 @@ lookup_words = read_text('lookup_words')
|
|
31 |
obj_pronouns = read_text('obj_pronouns')
|
32 |
profanities = read_text('profanities', 'json')
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def fuzzy_lookup(tweet):
|
|
|
|
|
|
|
|
|
36 |
lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())])
|
37 |
-
matches = dict()
|
38 |
|
39 |
# Loop each word in tweet
|
40 |
for word in tweet.split():
|
|
|
|
|
|
|
41 |
# Remove punctuations
|
42 |
word = word.strip(punctuation)
|
43 |
|
44 |
# Only get digits and letters then lowercase
|
45 |
-
processed_word = re.sub("[^a-zA-Z0-9@]", "", word)
|
46 |
-
|
47 |
-
matched_words = []
|
48 |
# If word > 4 chars
|
49 |
if len(processed_word) >= 4:
|
50 |
# Get fuzzy ratio
|
@@ -56,33 +70,30 @@ def fuzzy_lookup(tweet):
|
|
56 |
if len(scores) > 0:
|
57 |
max_score_index = np.argmax(scores)
|
58 |
if matched_words[max_score_index] in lookup_profanity:
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
for word,
|
63 |
-
word_split = word.split(
|
64 |
for pronoun in obj_pronouns:
|
65 |
if len(word_split) > 1:
|
66 |
if pronoun == word_split[-1]:
|
67 |
-
|
68 |
break
|
69 |
|
70 |
# Replace each profanities by fuzzy lookup result
|
71 |
-
for word,
|
72 |
-
tweet = tweet.replace(word,
|
73 |
|
74 |
for profanity, prof_varations in profanities.items():
|
75 |
if len(prof_varations) > 0:
|
76 |
for prof_variant in prof_varations:
|
77 |
tweet = tweet.replace(prof_variant, profanity)
|
78 |
|
79 |
-
return tweet,
|
80 |
|
81 |
|
82 |
def preprocess(tweet):
|
83 |
-
|
84 |
-
symbols = ['@', '#']
|
85 |
-
|
86 |
# Lowercase
|
87 |
tweet = tweet.lower()
|
88 |
|
@@ -97,71 +108,85 @@ def preprocess(tweet):
|
|
97 |
|
98 |
for index, word in enumerate(row_split):
|
99 |
|
100 |
-
# Remove words with symbols (e.g. @username, #hashtags)
|
101 |
-
if any(x in word for x in symbols):
|
102 |
-
row_split[index] = ''
|
103 |
-
|
104 |
# Remove links
|
105 |
if 'http' in word:
|
106 |
row_split[index] = ''
|
107 |
|
108 |
# Unify laugh texts format to 'haha'
|
|
|
109 |
if any(x in word for x in laugh_texts):
|
110 |
row_split[index] = 'haha'
|
111 |
|
112 |
# Combine list of words back to sentence
|
113 |
-
|
114 |
|
115 |
# Check if output contains single word then return null
|
116 |
-
if len(
|
117 |
-
return
|
118 |
-
|
119 |
-
# Filter needed characters
|
120 |
-
combined_text = re.sub(r"[^A-Za-z ]+", '', combined_text)
|
121 |
|
122 |
# Expand Contractions
|
123 |
for i in contractions.items():
|
124 |
-
|
125 |
|
126 |
-
|
|
|
127 |
|
128 |
-
|
129 |
-
def query(payload):
|
130 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
131 |
-
return response.json()
|
132 |
|
133 |
|
134 |
def predict(tweet):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
|
|
140 |
|
141 |
-
if 'error' in output:
|
142 |
-
return output['error'], 'Error occured. Try again later.', {}
|
143 |
-
elif len(matches) == 0:
|
144 |
-
return 'No Profanity Found.', '', {}
|
145 |
-
else:
|
146 |
-
output = [tuple(i.values()) for i in output[0]]
|
147 |
-
output = dict((x, y) for x, y in output)
|
148 |
-
predicted_label = list(output.keys())[0]
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
# tweet = tweet.replace(base_word, re.sub("[a-zA-Z0-9@]", "*", base_word))
|
157 |
-
return output, tweet, json.dumps(matches)
|
158 |
-
else:
|
159 |
-
return output, tweet, json.dumps(matches)
|
160 |
|
161 |
-
#
|
162 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
|
167 |
demo = gr.Interface(
|
@@ -169,19 +194,13 @@ demo = gr.Interface(
|
|
169 |
|
170 |
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')],
|
171 |
|
172 |
-
outputs=[gr.components.Label(num_top_classes=2, label="PREDICTION"),
|
173 |
-
gr.components.Text(label='OUTPUT'),
|
174 |
-
gr.components.JSON(label='DETECTED PROFANITIES')],
|
175 |
|
176 |
examples=['Tangina mo naman sobrang yabang mo gago!!😠😤 @davidrafael',
|
177 |
'Napakainit ngayong araw pakshet namaaan!!',
|
178 |
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO',
|
179 |
'Bobo ka ba? napakadali lang nyan eh... 🤡',
|
180 |
'Uy gago laptrip yung nangyare samen kanina HAHAHA😂😂'],
|
181 |
-
|
182 |
-
allow_flagging="manual",
|
183 |
-
flagging_callback=hf_writer,
|
184 |
-
flagging_options=['Good bot', 'Bad bot']
|
185 |
)
|
186 |
|
187 |
-
demo.launch()
|
|
|
9 |
from string import punctuation
|
10 |
|
11 |
|
12 |
+
API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection"
|
13 |
+
headers = {"Authorization": "Bearer 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"}
|
14 |
|
15 |
def read_text(filename, filetype='txt'):
|
16 |
words = []
|
|
|
31 |
obj_pronouns = read_text('obj_pronouns')
|
32 |
profanities = read_text('profanities', 'json')
|
33 |
|
34 |
+
def query(text):
|
35 |
+
text = {"inputs": text}
|
36 |
+
response = requests.post(API_URL, headers=headers, json=text)
|
37 |
+
return response.json()
|
38 |
+
|
39 |
+
|
40 |
+
# for profanity in profanities:
|
41 |
+
# print(profanity, process.extractOne(profanity, tweet.split(), scorer=fuzz.ratio))
|
42 |
+
|
43 |
|
44 |
def fuzzy_lookup(tweet):
|
45 |
+
|
46 |
+
matched_profanity = dict()
|
47 |
+
|
48 |
+
# Convert Profanity Dict to List
|
49 |
lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())])
|
|
|
50 |
|
51 |
# Loop each word in tweet
|
52 |
for word in tweet.split():
|
53 |
+
scores = []
|
54 |
+
matched_words = []
|
55 |
+
|
56 |
# Remove punctuations
|
57 |
word = word.strip(punctuation)
|
58 |
|
59 |
# Only get digits and letters then lowercase
|
60 |
+
processed_word = re.sub("[^a-zA-Z0-9@]", "", word)
|
61 |
+
|
|
|
62 |
# If word > 4 chars
|
63 |
if len(processed_word) >= 4:
|
64 |
# Get fuzzy ratio
|
|
|
70 |
if len(scores) > 0:
|
71 |
max_score_index = np.argmax(scores)
|
72 |
if matched_words[max_score_index] in lookup_profanity:
|
73 |
+
matched_profanity[word] = matched_words[max_score_index]
|
|
|
74 |
|
75 |
+
for word, profanity in matched_profanity.items():
|
76 |
+
word_split = word.split(profanity[-2:])
|
77 |
for pronoun in obj_pronouns:
|
78 |
if len(word_split) > 1:
|
79 |
if pronoun == word_split[-1]:
|
80 |
+
matched_profanity[word] = matched_profanity + ' ' + pronoun
|
81 |
break
|
82 |
|
83 |
# Replace each profanities by fuzzy lookup result
|
84 |
+
for word, profanity in matched_profanity.items():
|
85 |
+
tweet = tweet.replace(word, profanity)
|
86 |
|
87 |
for profanity, prof_varations in profanities.items():
|
88 |
if len(prof_varations) > 0:
|
89 |
for prof_variant in prof_varations:
|
90 |
tweet = tweet.replace(prof_variant, profanity)
|
91 |
|
92 |
+
return tweet, matched_profanity
|
93 |
|
94 |
|
95 |
def preprocess(tweet):
|
96 |
+
|
|
|
|
|
97 |
# Lowercase
|
98 |
tweet = tweet.lower()
|
99 |
|
|
|
108 |
|
109 |
for index, word in enumerate(row_split):
|
110 |
|
|
|
|
|
|
|
|
|
111 |
# Remove links
|
112 |
if 'http' in word:
|
113 |
row_split[index] = ''
|
114 |
|
115 |
# Unify laugh texts format to 'haha'
|
116 |
+
laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha']
|
117 |
if any(x in word for x in laugh_texts):
|
118 |
row_split[index] = 'haha'
|
119 |
|
120 |
# Combine list of words back to sentence
|
121 |
+
preprocessed_tweet = ' '.join(filter(None, row_split))
|
122 |
|
123 |
# Check if output contains single word then return null
|
124 |
+
if len(preprocessed_tweet.split()) == 1:
|
125 |
+
return preprocessed_tweet
|
|
|
|
|
|
|
126 |
|
127 |
# Expand Contractions
|
128 |
for i in contractions.items():
|
129 |
+
preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet)
|
130 |
|
131 |
+
# Fuzzy Lookup
|
132 |
+
preprocessed_tweet, matches = fuzzy_lookup(preprocessed_tweet)
|
133 |
|
134 |
+
return preprocessed_tweet, matches
|
|
|
|
|
|
|
135 |
|
136 |
|
137 |
def predict(tweet):
|
138 |
+
|
139 |
+
preprocessed_tweet, matched_profanity = preprocess(tweet)
|
140 |
+
|
141 |
+
prediction = query(preprocessed_tweet)
|
142 |
+
|
143 |
+
if type(prediction) is dict:
|
144 |
+
return "Model is still loading. Try again."
|
145 |
|
146 |
+
if bool(matched_profanity) == False:
|
147 |
+
return "No profanity found."
|
148 |
+
|
149 |
+
prediction = [tuple(i.values()) for i in prediction[0]]
|
150 |
+
prediction = dict((x, y) for x, y in prediction)
|
151 |
+
|
152 |
+
print("\n", tweet)
|
153 |
+
print(matched_profanity)
|
154 |
+
print(prediction, "\n")
|
155 |
|
156 |
+
return prediction
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
# # def predict(tweet):
|
160 |
+
|
161 |
+
# # fuzzy_text, matches = fuzzy_lookup(tweet)
|
162 |
+
# # processed_text = preprocess(fuzzy_text)
|
163 |
+
# # output = query(processed_text)
|
164 |
+
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
# # if 'error' in output:
|
167 |
+
# # return output['error'], 'Error occured. Try again later.', {}
|
168 |
+
# # elif len(matches) == 0:
|
169 |
+
# # return 'No Profanity Found.', '', {}
|
170 |
+
# # else:
|
171 |
+
# # output = [tuple(i.values()) for i in output[0]]
|
172 |
+
# # output = dict((x, y) for x, y in output)
|
173 |
+
# # predicted_label = list(output.keys())[0]
|
174 |
|
175 |
+
# # if predicted_label == 'Abusive':
|
176 |
+
# # # Censor
|
177 |
+
# # for base_word, _ in matches.items():
|
178 |
+
# # mask = '*' * len(base_word)
|
179 |
+
# # compiled = re.compile(re.escape(base_word), re.IGNORECASE)
|
180 |
+
# # tweet = compiled.sub(mask, tweet)
|
181 |
+
# # # tweet = tweet.replace(base_word, re.sub("[a-zA-Z0-9@]", "*", base_word))
|
182 |
+
# # return output, tweet, json.dumps(matches)
|
183 |
+
# # else:
|
184 |
+
# # return output, tweet, json.dumps(matches)
|
185 |
+
|
186 |
+
# # # output, tweet, matches = predict('ul0L Sama ng ugali mo pre Tangina uL0l!!!')
|
187 |
+
# # # print(output, '\n', tweet, '\n', matches)
|
188 |
+
|
189 |
+
# # hf_writer = gr.HuggingFaceDatasetSaver('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', 'tagalog-profanity-feedbacks')
|
190 |
|
191 |
|
192 |
demo = gr.Interface(
|
|
|
194 |
|
195 |
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')],
|
196 |
|
197 |
+
outputs=[gr.components.Label(num_top_classes=2, label="PREDICTION")],
|
|
|
|
|
198 |
|
199 |
examples=['Tangina mo naman sobrang yabang mo gago!!😠😤 @davidrafael',
|
200 |
'Napakainit ngayong araw pakshet namaaan!!',
|
201 |
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO',
|
202 |
'Bobo ka ba? napakadali lang nyan eh... 🤡',
|
203 |
'Uy gago laptrip yung nangyare samen kanina HAHAHA😂😂'],
|
|
|
|
|
|
|
|
|
204 |
)
|
205 |
|
206 |
+
demo.launch()
|