Spaces:
Runtime error
Runtime error
Modified app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,6 @@ import json
|
|
| 6 |
from thefuzz import process, fuzz
|
| 7 |
import numpy as np
|
| 8 |
import re
|
| 9 |
-
from string import punctuation
|
| 10 |
import nltk
|
| 11 |
nltk.download('words')
|
| 12 |
from nltk.corpus import words
|
|
@@ -47,7 +46,7 @@ punctuations = re.compile(r'^[^\w#@]+|[^\w#@]+$')
|
|
| 47 |
|
| 48 |
def fuzzy_lookup(tweet):
|
| 49 |
|
| 50 |
-
matched_profanity =
|
| 51 |
|
| 52 |
# tweet = punctuations.sub('', tweet).lower()
|
| 53 |
|
|
@@ -55,6 +54,7 @@ def fuzzy_lookup(tweet):
|
|
| 55 |
|
| 56 |
word = punctuations.sub('', word).lower()
|
| 57 |
base_word = word
|
|
|
|
| 58 |
|
| 59 |
if word in eng_words:
|
| 60 |
continue
|
|
@@ -71,8 +71,6 @@ def fuzzy_lookup(tweet):
|
|
| 71 |
scores = []
|
| 72 |
matched_words = []
|
| 73 |
|
| 74 |
-
print(word)
|
| 75 |
-
|
| 76 |
if len(word) >= 4:
|
| 77 |
# Get fuzzy ratio
|
| 78 |
for lookup_word in lookup_words:
|
|
@@ -83,16 +81,26 @@ def fuzzy_lookup(tweet):
|
|
| 83 |
if len(scores) > 0:
|
| 84 |
max_score_index = np.argmax(scores)
|
| 85 |
if matched_words[max_score_index] in lookup_profanity:
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
return matched_profanity
|
| 89 |
|
| 90 |
|
| 91 |
-
def preprocess(tweet):
|
| 92 |
|
| 93 |
tweet = tweet.lower()
|
| 94 |
tweet = emoji.replace_emoji(tweet, replace='')
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
# Elongated words conversion
|
| 97 |
tweet = re.sub(r'(.)\1{2,}', r'\1', tweet)
|
| 98 |
|
|
@@ -125,10 +133,11 @@ def preprocess(tweet):
|
|
| 125 |
|
| 126 |
def predict(tweet):
|
| 127 |
|
| 128 |
-
|
| 129 |
-
matched_profanity = fuzzy_lookup(preprocessed_tweet)
|
| 130 |
|
| 131 |
-
if len(
|
|
|
|
|
|
|
| 132 |
|
| 133 |
prediction = query(preprocessed_tweet)
|
| 134 |
|
|
@@ -139,10 +148,10 @@ def predict(tweet):
|
|
| 139 |
prediction = prediction[0][0]["label"]
|
| 140 |
|
| 141 |
print("\nTWEET:", tweet)
|
| 142 |
-
print("DETECTED PROFANITY:",
|
| 143 |
print("LABEL:", prediction, "\n")
|
| 144 |
|
| 145 |
-
return prediction,
|
| 146 |
|
| 147 |
return "No Profanity", {}
|
| 148 |
|
|
@@ -165,4 +174,7 @@ demo = gr.Interface(
|
|
| 165 |
title="Tagalog Profanity Classifier"
|
| 166 |
)
|
| 167 |
|
| 168 |
-
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from thefuzz import process, fuzz
|
| 7 |
import numpy as np
|
| 8 |
import re
|
|
|
|
| 9 |
import nltk
|
| 10 |
nltk.download('words')
|
| 11 |
from nltk.corpus import words
|
|
|
|
| 46 |
|
| 47 |
def fuzzy_lookup(tweet):
|
| 48 |
|
| 49 |
+
matched_profanity = dict()
|
| 50 |
|
| 51 |
# tweet = punctuations.sub('', tweet).lower()
|
| 52 |
|
|
|
|
| 54 |
|
| 55 |
word = punctuations.sub('', word).lower()
|
| 56 |
base_word = word
|
| 57 |
+
word = re.sub(r'(.)\1{2,}', r'\1', word)
|
| 58 |
|
| 59 |
if word in eng_words:
|
| 60 |
continue
|
|
|
|
| 71 |
scores = []
|
| 72 |
matched_words = []
|
| 73 |
|
|
|
|
|
|
|
| 74 |
if len(word) >= 4:
|
| 75 |
# Get fuzzy ratio
|
| 76 |
for lookup_word in lookup_words:
|
|
|
|
| 81 |
if len(scores) > 0:
|
| 82 |
max_score_index = np.argmax(scores)
|
| 83 |
if matched_words[max_score_index] in lookup_profanity:
|
| 84 |
+
for base_profanity, profanity_variations in profanities.items():
|
| 85 |
+
if matched_words[max_score_index] == base_profanity:
|
| 86 |
+
matched_profanity[base_word] = base_profanity
|
| 87 |
+
break
|
| 88 |
+
if matched_words[max_score_index] in profanity_variations:
|
| 89 |
+
matched_profanity[base_word] = base_profanity
|
| 90 |
+
break
|
| 91 |
+
|
| 92 |
return matched_profanity
|
| 93 |
|
| 94 |
|
| 95 |
+
def preprocess(tweet, profanities):
|
| 96 |
|
| 97 |
tweet = tweet.lower()
|
| 98 |
tweet = emoji.replace_emoji(tweet, replace='')
|
| 99 |
|
| 100 |
+
# Replace profanities
|
| 101 |
+
for base_word, matched_word in profanities.items():
|
| 102 |
+
tweet = tweet.replace(base_word, matched_word)
|
| 103 |
+
|
| 104 |
# Elongated words conversion
|
| 105 |
tweet = re.sub(r'(.)\1{2,}', r'\1', tweet)
|
| 106 |
|
|
|
|
| 133 |
|
| 134 |
def predict(tweet):
|
| 135 |
|
| 136 |
+
profanities = fuzzy_lookup(tweet)
|
|
|
|
| 137 |
|
| 138 |
+
if len(profanities) > 0:
|
| 139 |
+
|
| 140 |
+
preprocessed_tweet = preprocess(tweet, profanities)
|
| 141 |
|
| 142 |
prediction = query(preprocessed_tweet)
|
| 143 |
|
|
|
|
| 148 |
prediction = prediction[0][0]["label"]
|
| 149 |
|
| 150 |
print("\nTWEET:", tweet)
|
| 151 |
+
print("DETECTED PROFANITY:", list(profanities.keys()))
|
| 152 |
print("LABEL:", prediction, "\n")
|
| 153 |
|
| 154 |
+
return prediction, list(profanities.keys())
|
| 155 |
|
| 156 |
return "No Profanity", {}
|
| 157 |
|
|
|
|
| 174 |
title="Tagalog Profanity Classifier"
|
| 175 |
)
|
| 176 |
|
| 177 |
+
# demo.launch(debug=True)
|
| 178 |
+
tweet = "Tangaaa pala eh mamatay ka na pakyuuuu gag000 ul0l bob0 t4nginamo"
|
| 179 |
+
|
| 180 |
+
predict(tweet)
|