import gradio as gr import requests import emoji import re import json from thefuzz import process, fuzz import numpy as np import re import nltk nltk.download('words') from nltk.corpus import words API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection" headers = {"Authorization": "Bearer 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"} def query(text): payload = {"inputs": text} response = requests.post(API_URL, headers=headers, json=payload) return response.json() def read_text(filename, filetype='txt'): words = [] if filetype == 'txt': with open(filename + '.txt') as file: words = [line.rstrip() for line in file] words = list(set(words)) elif filetype == 'json': with open(filename + '.json') as json_file: words = json.load(json_file) return words contractions = read_text('contractions', 'json') similar_words = read_text('similar_words') addon_words = read_text('addon_words') profanities = read_text('profanities', 'json') lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())]) lookup_words = list(set(similar_words).union(set(lookup_profanity.tolist()))) eng_words = list(set(words.words()) - set(lookup_profanity)) punctuations = re.compile(r'^[^\w#@]+|[^\w#@]+$') # TODO check eng words that are tagalog profanities def fuzzy_lookup(tweet): matched_profanity = dict() # tweet = punctuations.sub('', tweet).lower() for word in tweet.split(): word = punctuations.sub('', word).lower() base_word = word word = re.sub(r'(.)\1{2,}', r'\1', word) if word in eng_words: continue for addon in addon_words: if word.startswith(addon): word = word[len(addon):] if word.endswith(addon): word = word[:-len(addon)] if word.startswith("@") or word.startswith("#"): word = word[1:] scores = [] matched_words = [] if len(word) >= 4: # Get fuzzy ratio for lookup_word in lookup_words: score = fuzz.ratio(word, lookup_word) if score >= 70: scores.append(score) matched_words.append(lookup_word) if len(scores) > 0: max_score_index = np.argmax(scores) if matched_words[max_score_index] in lookup_profanity: for base_profanity, profanity_variations in profanities.items(): if matched_words[max_score_index] == base_profanity: matched_profanity[base_word] = base_profanity break if matched_words[max_score_index] in profanity_variations: matched_profanity[base_word] = base_profanity break return matched_profanity def preprocess(tweet, profanities): tweet = tweet.lower() tweet = emoji.replace_emoji(tweet, replace='') # Replace profanities for base_word, matched_word in profanities.items(): tweet = tweet.replace(base_word, matched_word) # Elongated words conversion tweet = re.sub(r'(.)\1{2,}', r'\1', tweet) row_split = tweet.split() for index, word in enumerate(row_split): # Seperate pronouns for addon in addon_words: if word.endswith(addon): row_split[index] = word[:-len(addon)] + " " + addon # Remove links if 'http' in word: row_split[index] = '' # Unify laugh texts format to 'haha' laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha'] if any(x in word for x in laugh_texts): row_split[index] = 'haha' # Combine list of words back to sentence preprocessed_tweet = ' '.join(filter(None, row_split)) if len(preprocessed_tweet.split()) == 1: return preprocessed_tweet # Expand Contractions for i in contractions.items(): preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet) return preprocessed_tweet def predict(tweet): profanities = fuzzy_lookup(tweet) if len(profanities) > 0: preprocessed_tweet = preprocess(tweet, profanities) prediction = query(preprocessed_tweet) if type(prediction) == dict: print(prediction) error_message = prediction['error'] return error_message, {} prediction = prediction[0][0]["label"] print("\nTWEET:", tweet) print("DETECTED PROFANITY:", list(profanities.keys())) print("LABEL:", prediction, "\n") return prediction, list(profanities.keys()) return "No Profanity", {} demo = gr.Interface( fn=predict, inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')], outputs=[gr.components.Text(label="PREDICTION"), gr.JSON(label="PROFANITIES")], examples=['Tangina mo naman sobrang yabang mo gago!!😠😤 @davidrafael', 'Napakainit ngayong araw pakshet namaaan!!', 'Napakabagal naman ng wifi tangina #PLDC #HelloDITO', 'Bobo ka ba? napakadali lang nyan eh... 🤡', 'Uy gago laptrip yung nangyare samen kanina HAHAHA😂😂'], allow_flagging="never", title="Tagalog Profanity Classifier" ) demo.launch(debug=True)