GroqApi / app.py
mgokg's picture
Update app.py
caee77b verified
import gradio as gr
from openai import OpenAI
import os
from IPython.display import display, Markdown
# Liste der verfügbaren Modelle
MODELS = [
"llama3-70b-8192",
"llama3-8b-8192",
"qwen-qwq-32b",
"mistral-saba-24b",
"qwen-2.5-coder-32b",
"qwen-2.5-32b",
"deepseek-r1-distill-qwen-32b",
"deepseek-r1-distill-llama-70b-specdec",
"deepseek-r1-distill-llama-70b",
"llama-3.2-3b-preview",
"llama-3.2-11b-vision-preview"
]
def predict(model, input_text):
# Initialisiere den Groq Client
client = OpenAI(
base_url="https://api.groq.com/openai/v1",
api_key=os.environ.get("GROQ_API_KEY"),
)
# Sende Anfrage an die Groq API
completion = client.chat.completions.create(
model=model,
messages=[
{
"role": "user",
"content": input_text
}
],
temperature=0.1,
max_tokens=4096,
top_p=1,
stream=False,
stop=None,
)
# Hole die Antwort des Modells
response = completion.choices[0].message.content
# Zeige die Antwort als Markdown an
display(Markdown(f"**Antwort des Modells ({model}):**\n\n{response}"))
return response
# Erstelle die Gradio Oberfläche
with gr.Blocks() as demo:
gr.Markdown("# Groq API Chat Interface")
with gr.Row():
model_dropdown = gr.Dropdown(
choices=MODELS,
value=MODELS[0],
label="Wähle ein Modell"
)
output_text = gr.Markdown()
with gr.Row():
input_text = gr.Textbox()
input_text.submit(
fn=predict,
inputs=[model_dropdown, input_text],
outputs=output_text
)
#submit_btn = gr.Button("Absenden")
#submit_btn.click
if __name__ == "__main__":
demo.launch()