import gradio as gr from openai import OpenAI import os from IPython.display import display, Markdown # Liste der verfügbaren Modelle MODELS = [ "llama3-70b-8192", "llama3-8b-8192", "qwen-qwq-32b", "mistral-saba-24b", "qwen-2.5-coder-32b", "qwen-2.5-32b", "deepseek-r1-distill-qwen-32b", "deepseek-r1-distill-llama-70b-specdec", "deepseek-r1-distill-llama-70b", "llama-3.2-3b-preview", "llama-3.2-11b-vision-preview" ] def predict(model, input_text): # Initialisiere den Groq Client client = OpenAI( base_url="https://api.groq.com/openai/v1", api_key=os.environ.get("GROQ_API_KEY"), ) # Sende Anfrage an die Groq API completion = client.chat.completions.create( model=model, messages=[ { "role": "user", "content": input_text } ], temperature=0.1, max_tokens=4096, top_p=1, stream=False, stop=None, ) # Hole die Antwort des Modells response = completion.choices[0].message.content # Zeige die Antwort als Markdown an display(Markdown(f"**Antwort des Modells ({model}):**\n\n{response}")) return response # Erstelle die Gradio Oberfläche with gr.Blocks() as demo: gr.Markdown("# Groq API Chat Interface") with gr.Row(): model_dropdown = gr.Dropdown( choices=MODELS, value=MODELS[0], label="Wähle ein Modell" ) output_text = gr.Markdown() with gr.Row(): input_text = gr.Textbox() input_text.submit( fn=predict, inputs=[model_dropdown, input_text], outputs=output_text ) #submit_btn = gr.Button("Absenden") #submit_btn.click if __name__ == "__main__": demo.launch()