mgokg commited on
Commit
12181b6
·
verified ·
1 Parent(s): 71dda11

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -1
app.py CHANGED
@@ -6,6 +6,7 @@ from gradio_client import Client
6
  from chromadb.config import DEFAULT_DATABASE, DEFAULT_TENANT
7
  from langchain.text_splitter import RecursiveCharacterTextSplitter
8
  import os
 
9
  os.system("pip install --upgrade gradio")
10
 
11
  # Initialisiere ChromaDB
@@ -23,6 +24,22 @@ custom_css = """
23
  # Verwende die integrierten Embeddings von ChromaDB
24
  embedding_function = embedding_functions.DefaultEmbeddingFunction()
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  client = Client("Qwen/Qwen2.5-72B-Instruct")
27
  def ask_llm(llm_prompt_input):
28
  # Erstelle Embedding für den Prompt
@@ -139,7 +156,16 @@ with gr.Blocks() as suche:
139
  with gr.Row():
140
  search_button = gr.Button("Suchen")
141
  search_button.click(search_similar_documents, inputs=prompt_input, outputs=search_output)
142
-
 
 
 
 
 
 
 
 
 
143
 
144
  # Erstelle die Gradio-Schnittstelle
145
  with gr.Blocks() as demo:
 
6
  from chromadb.config import DEFAULT_DATABASE, DEFAULT_TENANT
7
  from langchain.text_splitter import RecursiveCharacterTextSplitter
8
  import os
9
+ import speech_recognition as sr
10
  os.system("pip install --upgrade gradio")
11
 
12
  # Initialisiere ChromaDB
 
24
  # Verwende die integrierten Embeddings von ChromaDB
25
  embedding_function = embedding_functions.DefaultEmbeddingFunction()
26
 
27
+ # Function to transcribe audio data to text
28
+ def transcribe_audio(audio):
29
+ recognizer = sr.Recognizer()
30
+ with sr.AudioFile(audio) as source:
31
+ audio_data = recognizer.record(source)
32
+ try:
33
+ text = recognizer.recognize_google(audio_data)
34
+ return text
35
+ except sr.UnknownValueError:
36
+ return "Speech recognition could not understand the audio."
37
+ except sr.RequestError as e:
38
+ return f"Could not request results from Google Speech Recognition service; {e}"
39
+
40
+
41
+
42
+
43
  client = Client("Qwen/Qwen2.5-72B-Instruct")
44
  def ask_llm(llm_prompt_input):
45
  # Erstelle Embedding für den Prompt
 
156
  with gr.Row():
157
  search_button = gr.Button("Suchen")
158
  search_button.click(search_similar_documents, inputs=prompt_input, outputs=search_output)
159
+
160
+
161
+ with gr.Blocks() as speech:
162
+ gr.Markdown("### audio", elem_classes="tab-header")
163
+ with gr.Row():
164
+ sr_inputs=gr.Audio(source="microphone", type="filepath"),
165
+ sr_outputs=gr.Textbox(label="Transcribed Text")
166
+ with gr.Row():
167
+ submit_button = gr.Button("rec")
168
+ submit_button.click(transcribe_audio, inputs=sr_inputs, outputs=sr_outputs)
169
 
170
  # Erstelle die Gradio-Schnittstelle
171
  with gr.Blocks() as demo: