Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,20 +7,42 @@ from chromadb.config import DEFAULT_DATABASE, DEFAULT_TENANT
|
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
import os
|
9 |
import speech_recognition as sr
|
10 |
-
|
11 |
-
import json
|
12 |
|
13 |
# Initialisiere ChromaDB
|
14 |
client_chroma = chromadb.Client()
|
|
|
15 |
collection_name = "pdf_collection"
|
16 |
collection = client_chroma.get_or_create_collection(name=collection_name)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Verwende die integrierten Embeddings von ChromaDB
|
19 |
embedding_function = embedding_functions.DefaultEmbeddingFunction()
|
20 |
|
21 |
def update(message):
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
client = Client("Qwen/Qwen2.5-72B-Instruct")
|
26 |
|
@@ -31,22 +53,121 @@ def transcribe_audio(audio):
|
|
31 |
audio_data = recognizer.record(source)
|
32 |
try:
|
33 |
text = recognizer.recognize_google(audio_data, language="de-DE")
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
except sr.UnknownValueError:
|
37 |
return "Speech recognition could not understand the audio."
|
38 |
except sr.RequestError as e:
|
39 |
return f"Could not request results from Google Speech Recognition service; {e}"
|
40 |
|
41 |
-
# Other functions (ask_llm, process_pdf, search_similar_documents) remain unchanged
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
with gr.Blocks() as chat:
|
44 |
gr.Markdown("### Chat", elem_classes="tab-header")
|
45 |
-
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
46 |
llm_output = gr.Textbox(label="LLM Antwort")
|
47 |
with gr.Row():
|
48 |
llm_prompt_input = gr.Textbox(label="Frage an das LLM", placeholder="Gib eine Frage ein")
|
49 |
llm_submit_button = gr.Button("send")
|
|
|
|
|
50 |
llm_submit_button.click(ask_llm, inputs=llm_prompt_input, outputs=llm_output)
|
51 |
|
52 |
with gr.Blocks() as upload:
|
@@ -61,21 +182,34 @@ with gr.Blocks() as upload:
|
|
61 |
with gr.Blocks() as suche:
|
62 |
gr.Markdown("### suche", elem_classes="tab-header")
|
63 |
with gr.Row():
|
64 |
-
prompt_input = gr.Textbox(label="Suche nach ähnlichen Dokumenten", placeholder="Gib einen Suchbegriff ein")
|
65 |
with gr.Row():
|
66 |
search_output = gr.Textbox(label="Ähnliche Dokumente")
|
67 |
with gr.Row():
|
68 |
search_button = gr.Button("Suchen")
|
69 |
search_button.click(search_similar_documents, inputs=prompt_input, outputs=search_output)
|
70 |
|
|
|
71 |
with gr.Blocks() as speech:
|
72 |
gr.Markdown("### audio", elem_classes="tab-header")
|
|
|
73 |
with gr.Row():
|
74 |
sr_inputs = gr.Microphone(type="filepath")
|
75 |
sr_outputs = gr.Textbox(label="Transcribed Text")
|
76 |
sr_inputs.change(transcribe_audio, inputs=sr_inputs, outputs=sr_outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
|
|
78 |
with gr.Blocks() as demo:
|
79 |
-
gr.TabbedInterface(
|
|
|
|
|
|
|
80 |
|
|
|
81 |
demo.launch()
|
|
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
import os
|
9 |
import speech_recognition as sr
|
10 |
+
|
|
|
11 |
|
12 |
# Initialisiere ChromaDB
|
13 |
client_chroma = chromadb.Client()
|
14 |
+
#client_croma = chromadb.PersistentClient(path="/")
|
15 |
collection_name = "pdf_collection"
|
16 |
collection = client_chroma.get_or_create_collection(name=collection_name)
|
17 |
|
18 |
+
custom_css = """
|
19 |
+
.gr-button {
|
20 |
+
width: 300px; /* Set the width of the button */
|
21 |
+
}
|
22 |
+
"""
|
23 |
+
|
24 |
# Verwende die integrierten Embeddings von ChromaDB
|
25 |
embedding_function = embedding_functions.DefaultEmbeddingFunction()
|
26 |
|
27 |
def update(message):
|
28 |
+
url = "https://api.groq.com/openai/v1/chat/completions"
|
29 |
+
headers = {
|
30 |
+
"Authorization": groq,
|
31 |
+
"Content-Type": "application/json"
|
32 |
+
}
|
33 |
+
data = {
|
34 |
+
"messages": [
|
35 |
+
{
|
36 |
+
"role": "user",
|
37 |
+
"content": message
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"model": "mixtral-8x7b-32768",
|
41 |
+
"temperature": 0.2
|
42 |
+
}
|
43 |
+
|
44 |
+
response = requests.post(url, headers=headers, data=json.dumps(data))
|
45 |
+
return response.json()['choices'][0]['message']['content']
|
46 |
|
47 |
client = Client("Qwen/Qwen2.5-72B-Instruct")
|
48 |
|
|
|
53 |
audio_data = recognizer.record(source)
|
54 |
try:
|
55 |
text = recognizer.recognize_google(audio_data, language="de-DE")
|
56 |
+
result = client.predict(
|
57 |
+
query=text,
|
58 |
+
history=[],
|
59 |
+
system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
|
60 |
+
api_name="/model_chat"
|
61 |
+
)
|
62 |
+
result = result[1]
|
63 |
+
result=gr.Markdown(result)
|
64 |
+
return result
|
65 |
+
#text = update(text)
|
66 |
+
#return text
|
67 |
except sr.UnknownValueError:
|
68 |
return "Speech recognition could not understand the audio."
|
69 |
except sr.RequestError as e:
|
70 |
return f"Could not request results from Google Speech Recognition service; {e}"
|
71 |
|
|
|
72 |
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
def ask_llm(llm_prompt_input):
|
77 |
+
# Erstelle Embedding für den Prompt
|
78 |
+
query_embedding = embedding_function([llm_prompt_input])[0]
|
79 |
+
|
80 |
+
# Führe die Ähnlichkeitssuche durch
|
81 |
+
results = collection.query(
|
82 |
+
query_embeddings=[query_embedding],
|
83 |
+
n_results=3
|
84 |
+
)
|
85 |
+
|
86 |
+
# Formatiere die Ergebnisse
|
87 |
+
formatted_results = []
|
88 |
+
for i, doc in enumerate(results["documents"][0]):
|
89 |
+
metadata = results["metadatas"][0][i]
|
90 |
+
filename = metadata["filename"]
|
91 |
+
formatted_results.append(f"### Dokument {i+1} (Dateiname: {filename})\n{doc}\n")
|
92 |
+
|
93 |
+
# Füge die formatierten Ergebnisse zum Prompt hinzu
|
94 |
+
enriched_prompt = f"{llm_prompt_input}\n\n### Verwandte Informationen:\n{''.join(formatted_results)}"
|
95 |
+
#print(enriched_prompt)
|
96 |
+
# Führe die Abfrage des LLM durch
|
97 |
+
result = client.predict(
|
98 |
+
query=enriched_prompt,
|
99 |
+
history=[],
|
100 |
+
system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
|
101 |
+
api_name="/model_chat"
|
102 |
+
)
|
103 |
+
result = result[1]
|
104 |
+
result=gr.Markdown(result)
|
105 |
+
return result
|
106 |
+
|
107 |
+
def process_pdf(file):
|
108 |
+
# Read the PDF content
|
109 |
+
pdf_reader = PdfReader(file.name)
|
110 |
+
text = ""
|
111 |
+
for page in pdf_reader.pages:
|
112 |
+
text += page.extract_text()
|
113 |
+
|
114 |
+
# Split the text into smaller chunks
|
115 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
116 |
+
chunk_size=1000, # Adjust the chunk size as needed
|
117 |
+
chunk_overlap=100 # Adjust the overlap as needed
|
118 |
+
)
|
119 |
+
chunks = text_splitter.split_text(text)
|
120 |
+
|
121 |
+
# Create embeddings for each chunk
|
122 |
+
embeddings = embedding_function(chunks)
|
123 |
+
|
124 |
+
# Store each chunk in ChromaDB
|
125 |
+
for i, chunk in enumerate(chunks):
|
126 |
+
collection.add(
|
127 |
+
documents=[chunk],
|
128 |
+
metadatas=[{"filename": file.name, "chunk_id": i}],
|
129 |
+
ids=[f"{file.name}_{i}"] # Use a unique ID for each chunk
|
130 |
+
)
|
131 |
+
return f"PDF wurde erfolgreich in ChromaDB gespeichert."
|
132 |
+
|
133 |
+
# Example usage
|
134 |
+
# process_pdf(your_file_object)
|
135 |
+
def search_similar_documents(prompt):
|
136 |
+
# Erstelle Embedding für den Prompt
|
137 |
+
query_embedding = embedding_function([prompt])[0]
|
138 |
+
|
139 |
+
# Führe die Ähnlichkeitssuche durch
|
140 |
+
results = collection.query(
|
141 |
+
query_embeddings=[query_embedding],
|
142 |
+
n_results=3
|
143 |
+
)
|
144 |
+
|
145 |
+
# Formatiere die Ergebnisse
|
146 |
+
formatted_results = []
|
147 |
+
for i, doc in enumerate(results["documents"][0]):
|
148 |
+
metadata = results["metadatas"][0][i]
|
149 |
+
filename = metadata["filename"]
|
150 |
+
formatted_results.append(f"{doc}\n")
|
151 |
+
|
152 |
+
ergebnis = f"{''.join(formatted_results)}"
|
153 |
+
ergebnis = gr.Markdown(ergebnis)
|
154 |
+
return ergebnis
|
155 |
+
#return "\n".join(formatted_results)
|
156 |
+
|
157 |
with gr.Blocks() as chat:
|
158 |
gr.Markdown("### Chat", elem_classes="tab-header")
|
159 |
+
#with gr.Row():
|
160 |
+
#prompt_input = gr.Textbox(label="Suche nach ähnlichen Dokumenten", placeholder="Gib einen Suchbegriff ein")
|
161 |
+
#search_output = gr.Textbox(label="Ähnliche Dokumente")
|
162 |
+
#with gr.Row():
|
163 |
+
#search_button = gr.Button("Suchen")
|
164 |
+
with gr.Row():
|
165 |
llm_output = gr.Textbox(label="LLM Antwort")
|
166 |
with gr.Row():
|
167 |
llm_prompt_input = gr.Textbox(label="Frage an das LLM", placeholder="Gib eine Frage ein")
|
168 |
llm_submit_button = gr.Button("send")
|
169 |
+
|
170 |
+
#search_button.click(search_similar_documents, inputs=prompt_input, outputs=search_output)
|
171 |
llm_submit_button.click(ask_llm, inputs=llm_prompt_input, outputs=llm_output)
|
172 |
|
173 |
with gr.Blocks() as upload:
|
|
|
182 |
with gr.Blocks() as suche:
|
183 |
gr.Markdown("### suche", elem_classes="tab-header")
|
184 |
with gr.Row():
|
185 |
+
prompt_input = gr.Textbox(label="Suche nach ähnlichen Dokumenten", placeholder="Gib einen Suchbegriff ein")
|
186 |
with gr.Row():
|
187 |
search_output = gr.Textbox(label="Ähnliche Dokumente")
|
188 |
with gr.Row():
|
189 |
search_button = gr.Button("Suchen")
|
190 |
search_button.click(search_similar_documents, inputs=prompt_input, outputs=search_output)
|
191 |
|
192 |
+
|
193 |
with gr.Blocks() as speech:
|
194 |
gr.Markdown("### audio", elem_classes="tab-header")
|
195 |
+
|
196 |
with gr.Row():
|
197 |
sr_inputs = gr.Microphone(type="filepath")
|
198 |
sr_outputs = gr.Textbox(label="Transcribed Text")
|
199 |
sr_inputs.change(transcribe_audio, inputs=sr_inputs, outputs=sr_outputs)
|
200 |
+
|
201 |
+
with gr.Row():
|
202 |
+
submit_button = gr.Button("rec")
|
203 |
+
|
204 |
+
submit_button.click(transcribe_audio, inputs=sr_inputs, outputs=sr_outputs)
|
205 |
+
|
206 |
|
207 |
+
# Erstelle die Gradio-Schnittstelle
|
208 |
with gr.Blocks() as demo:
|
209 |
+
gr.TabbedInterface(
|
210 |
+
[chat, upload, suche, speech]
|
211 |
+
)
|
212 |
+
|
213 |
|
214 |
+
# Starte die Gradio-Anwendung
|
215 |
demo.launch()
|