Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from chromadb.utils import embedding_functions
|
|
4 |
from PyPDF2 import PdfReader
|
5 |
from gradio_client import Client
|
6 |
from chromadb.config import DEFAULT_DATABASE, DEFAULT_TENANT
|
7 |
-
|
8 |
|
9 |
# Initialisiere ChromaDB
|
10 |
client_chroma = chromadb.Client()
|
@@ -46,26 +46,34 @@ def ask_llm(llm_prompt_input):
|
|
46 |
|
47 |
|
48 |
return result
|
49 |
-
|
50 |
def process_pdf(file):
|
51 |
-
#
|
52 |
pdf_reader = PdfReader(file.name)
|
53 |
text = ""
|
54 |
for page in pdf_reader.pages:
|
55 |
text += page.extract_text()
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
collection.add(
|
62 |
-
documents=[text],
|
63 |
-
metadatas=[{"filename": file.name}],
|
64 |
-
ids=[file.name] # Verwende den Dateinamen als ID
|
65 |
)
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
|
|
|
|
69 |
def search_similar_documents(prompt):
|
70 |
# Erstelle Embedding für den Prompt
|
71 |
query_embedding = embedding_function([prompt])[0]
|
|
|
4 |
from PyPDF2 import PdfReader
|
5 |
from gradio_client import Client
|
6 |
from chromadb.config import DEFAULT_DATABASE, DEFAULT_TENANT
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
|
9 |
# Initialisiere ChromaDB
|
10 |
client_chroma = chromadb.Client()
|
|
|
46 |
|
47 |
|
48 |
return result
|
49 |
+
|
50 |
def process_pdf(file):
|
51 |
+
# Read the PDF content
|
52 |
pdf_reader = PdfReader(file.name)
|
53 |
text = ""
|
54 |
for page in pdf_reader.pages:
|
55 |
text += page.extract_text()
|
56 |
|
57 |
+
# Split the text into smaller chunks
|
58 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
59 |
+
chunk_size=1000, # Adjust the chunk size as needed
|
60 |
+
chunk_overlap=100 # Adjust the overlap as needed
|
|
|
|
|
|
|
|
|
61 |
)
|
62 |
+
chunks = text_splitter.split_text(text)
|
63 |
+
|
64 |
+
# Create embeddings for each chunk
|
65 |
+
embeddings = embedding_function(chunks)
|
66 |
|
67 |
+
# Store each chunk in ChromaDB
|
68 |
+
for i, chunk in enumerate(chunks):
|
69 |
+
collection.add(
|
70 |
+
documents=[chunk],
|
71 |
+
metadatas=[{"filename": file.name, "chunk_id": i}],
|
72 |
+
ids=[f"{file.name}_{i}"] # Use a unique ID for each chunk
|
73 |
+
)
|
74 |
|
75 |
+
# Example usage
|
76 |
+
# process_pdf(your_file_object)
|
77 |
def search_similar_documents(prompt):
|
78 |
# Erstelle Embedding für den Prompt
|
79 |
query_embedding = embedding_function([prompt])[0]
|