Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,9 +16,29 @@ collection = client_chroma.get_or_create_collection(name=collection_name)
|
|
16 |
embedding_function = embedding_functions.DefaultEmbeddingFunction()
|
17 |
|
18 |
client = Client("Qwen/Qwen2.5-72B-Instruct")
|
19 |
-
def ask_llm(llm_prompt_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
result = client.predict(
|
21 |
-
query=f"{llm_prompt_input}",
|
22 |
history=[],
|
23 |
system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
|
24 |
api_name="/model_chat"
|
|
|
16 |
embedding_function = embedding_functions.DefaultEmbeddingFunction()
|
17 |
|
18 |
client = Client("Qwen/Qwen2.5-72B-Instruct")
|
19 |
+
def ask_llm(llm_prompt_input):
|
20 |
+
# Erstelle Embedding für den Prompt
|
21 |
+
query_embedding = embedding_function([llm_prompt_input])[0]
|
22 |
+
|
23 |
+
# Führe die Ähnlichkeitssuche durch
|
24 |
+
results = collection.query(
|
25 |
+
query_embeddings=[query_embedding],
|
26 |
+
n_results=3
|
27 |
+
)
|
28 |
+
|
29 |
+
# Formatiere die Ergebnisse
|
30 |
+
formatted_results = []
|
31 |
+
for i, doc in enumerate(results["documents"][0]):
|
32 |
+
metadata = results["metadatas"][0][i]
|
33 |
+
filename = metadata["filename"]
|
34 |
+
formatted_results.append(f"{doc}\n")
|
35 |
+
|
36 |
+
queri = "\n".join(formatted_results)
|
37 |
+
#return "\n".join(formatted_results)
|
38 |
+
|
39 |
+
|
40 |
result = client.predict(
|
41 |
+
query=f"{llm_prompt_input} kontext:{queri}",
|
42 |
history=[],
|
43 |
system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
|
44 |
api_name="/model_chat"
|