Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import fitz # PyMuPDF
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from langchain.vectorstores import Chroma
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
# Load environment variables
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
# Initialize the model and tokenizer
|
15 |
+
model_name = "openai-community/gpt2"
|
16 |
+
# model_name = "google/gemma-2-9b"
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(model_name) # , use_auth_token=hf_api_key
|
19 |
+
|
20 |
+
def get_llm_response(input_prompt, content, prompt):
|
21 |
+
combined_input = f"{input_prompt}\nContent: {content}\nQuestion: {prompt}\nAnswer:"
|
22 |
+
inputs = tokenizer(combined_input, return_tensors="pt")
|
23 |
+
outputs = model.generate(**inputs, max_length=400, num_return_sequences=1)
|
24 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
# Extract the answer part from the response
|
27 |
+
answer_start = response.find("Answer:") + len("Answer:")
|
28 |
+
answer = response[answer_start:].strip()
|
29 |
+
|
30 |
+
return answer
|
31 |
+
|
32 |
+
# Function to extract text from PDF file
|
33 |
+
def extract_text_from_pdf(file):
|
34 |
+
try:
|
35 |
+
doc = fitz.open(stream=file.read(), filetype="pdf")
|
36 |
+
text = ""
|
37 |
+
for page in doc:
|
38 |
+
text += page.get_text()
|
39 |
+
return text
|
40 |
+
except Exception as e:
|
41 |
+
return f"Error occurred while reading PDF file: {e}"
|
42 |
+
|
43 |
+
def process_pdf_and_answer_question(pdf_file, question):
|
44 |
+
# Extract text from uploaded PDF file
|
45 |
+
pdf_text = extract_text_from_pdf(pdf_file)
|
46 |
+
|
47 |
+
if not pdf_text or "Error occurred" in pdf_text:
|
48 |
+
return pdf_text
|
49 |
+
|
50 |
+
try:
|
51 |
+
# Create embeddings
|
52 |
+
embeddings = HuggingFaceEmbeddings()
|
53 |
+
|
54 |
+
# Split text into chunks
|
55 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
56 |
+
chunk_size=1000,
|
57 |
+
chunk_overlap=20,
|
58 |
+
length_function=len,
|
59 |
+
is_separator_regex=False,
|
60 |
+
)
|
61 |
+
chunks = text_splitter.create_documents([pdf_text])
|
62 |
+
|
63 |
+
# Store chunks in ChromaDB
|
64 |
+
persist_directory = 'pdf_embeddings'
|
65 |
+
vectordb = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=persist_directory)
|
66 |
+
vectordb.persist() # Persist ChromaDB
|
67 |
+
|
68 |
+
# Load persisted Chroma database
|
69 |
+
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
70 |
+
|
71 |
+
# Perform question answering
|
72 |
+
if question:
|
73 |
+
docs = vectordb.similarity_search(question)
|
74 |
+
text = docs[0].page_content
|
75 |
+
input_prompt = "You are an expert in understanding text contents. You will receive an input PDF file and you will have to answer questions based on the input file."
|
76 |
+
response = get_llm_response(input_prompt, text, question)
|
77 |
+
return response
|
78 |
+
else:
|
79 |
+
return "Please provide a valid question."
|
80 |
+
except Exception as e:
|
81 |
+
return f"Error occurred during text processing: {e}"
|
82 |
+
|
83 |
+
# Create Gradio interface
|
84 |
+
iface = gr.Interface(
|
85 |
+
fn=process_pdf_and_answer_question,
|
86 |
+
inputs=[gr.inputs.File(type="file", label="Upload PDF File"), gr.inputs.Textbox(lines=2, placeholder="Ask a Question")],
|
87 |
+
outputs="text",
|
88 |
+
title="PDF Chatbot",
|
89 |
+
description="Upload a PDF file and ask questions about its content."
|
90 |
+
)
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
iface.launch()
|