Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,30 +5,33 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
5 |
from langchain.vectorstores import Chroma
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
-
import os
|
9 |
from dotenv import load_dotenv
|
10 |
|
11 |
# Load environment variables
|
12 |
load_dotenv()
|
|
|
13 |
|
14 |
-
# Initialize the model and tokenizer
|
15 |
model_name = "openai-community/gpt2"
|
16 |
# model_name = "google/gemma-2-9b"
|
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
-
model = AutoModelForCausalLM.from_pretrained(model_name) # ,
|
|
|
19 |
|
20 |
def get_llm_response(input_prompt, content, prompt):
|
21 |
combined_input = f"{input_prompt}\nContent: {content}\nQuestion: {prompt}\nAnswer:"
|
22 |
inputs = tokenizer(combined_input, return_tensors="pt")
|
23 |
outputs = model.generate(**inputs, max_length=400, num_return_sequences=1)
|
24 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
-
|
26 |
# Extract the answer part from the response
|
27 |
answer_start = response.find("Answer:") + len("Answer:")
|
28 |
answer = response[answer_start:].strip()
|
29 |
-
|
30 |
return answer
|
31 |
|
|
|
32 |
# Function to extract text from PDF file
|
33 |
def extract_text_from_pdf(file):
|
34 |
try:
|
@@ -40,54 +43,62 @@ def extract_text_from_pdf(file):
|
|
40 |
except Exception as e:
|
41 |
return f"Error occurred while reading PDF file: {e}"
|
42 |
|
43 |
-
def process_pdf_and_answer_question(pdf_file, question):
|
44 |
-
# Extract text from uploaded PDF file
|
45 |
-
pdf_text = extract_text_from_pdf(pdf_file)
|
46 |
-
|
47 |
-
if not pdf_text or "Error occurred" in pdf_text:
|
48 |
-
return pdf_text
|
49 |
-
|
50 |
-
try:
|
51 |
-
# Create embeddings
|
52 |
-
embeddings = HuggingFaceEmbeddings()
|
53 |
-
|
54 |
-
# Split text into chunks
|
55 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
56 |
-
chunk_size=1000,
|
57 |
-
chunk_overlap=20,
|
58 |
-
length_function=len,
|
59 |
-
is_separator_regex=False,
|
60 |
-
)
|
61 |
-
chunks = text_splitter.create_documents([pdf_text])
|
62 |
-
|
63 |
-
# Store chunks in ChromaDB
|
64 |
-
persist_directory = 'pdf_embeddings'
|
65 |
-
vectordb = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=persist_directory)
|
66 |
-
vectordb.persist() # Persist ChromaDB
|
67 |
-
|
68 |
-
# Load persisted Chroma database
|
69 |
-
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
70 |
-
|
71 |
-
# Perform question answering
|
72 |
-
if question:
|
73 |
-
docs = vectordb.similarity_search(question)
|
74 |
-
text = docs[0].page_content
|
75 |
-
input_prompt = "You are an expert in understanding text contents. You will receive an input PDF file and you will have to answer questions based on the input file."
|
76 |
-
response = get_llm_response(input_prompt, text, question)
|
77 |
-
return response
|
78 |
-
else:
|
79 |
-
return "Please provide a valid question."
|
80 |
-
except Exception as e:
|
81 |
-
return f"Error occurred during text processing: {e}"
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
if __name__ == "__main__":
|
93 |
-
|
|
|
5 |
from langchain.vectorstores import Chroma
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
+
import os
|
9 |
from dotenv import load_dotenv
|
10 |
|
11 |
# Load environment variables
|
12 |
load_dotenv()
|
13 |
+
# hf_api_key = os.getenv("HF_TOKEN")
|
14 |
|
|
|
15 |
model_name = "openai-community/gpt2"
|
16 |
# model_name = "google/gemma-2-9b"
|
17 |
+
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(model_name) # ,use_auth_token=hf_api_key)
|
20 |
+
|
21 |
|
22 |
def get_llm_response(input_prompt, content, prompt):
|
23 |
combined_input = f"{input_prompt}\nContent: {content}\nQuestion: {prompt}\nAnswer:"
|
24 |
inputs = tokenizer(combined_input, return_tensors="pt")
|
25 |
outputs = model.generate(**inputs, max_length=400, num_return_sequences=1)
|
26 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
+
|
28 |
# Extract the answer part from the response
|
29 |
answer_start = response.find("Answer:") + len("Answer:")
|
30 |
answer = response[answer_start:].strip()
|
31 |
+
|
32 |
return answer
|
33 |
|
34 |
+
|
35 |
# Function to extract text from PDF file
|
36 |
def extract_text_from_pdf(file):
|
37 |
try:
|
|
|
43 |
except Exception as e:
|
44 |
return f"Error occurred while reading PDF file: {e}"
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
def process_pdf(uploaded_file, prompt):
|
48 |
+
if uploaded_file is not None:
|
49 |
+
# Extract text from uploaded PDF file
|
50 |
+
pdf_text = extract_text_from_pdf(uploaded_file)
|
51 |
+
if pdf_text:
|
52 |
+
try:
|
53 |
+
# Create embeddings
|
54 |
+
embeddings = HuggingFaceEmbeddings()
|
55 |
+
|
56 |
+
# Split text into chunks
|
57 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
58 |
+
chunk_size=1000,
|
59 |
+
chunk_overlap=20,
|
60 |
+
length_function=len,
|
61 |
+
is_separator_regex=False,
|
62 |
+
)
|
63 |
+
chunks = text_splitter.create_documents([pdf_text])
|
64 |
+
|
65 |
+
# Store chunks in ChromaDB
|
66 |
+
persist_directory = 'pdf_embeddings'
|
67 |
+
vectordb = Chroma.from_documents(documents=chunks, embedding=embeddings,
|
68 |
+
persist_directory=persist_directory)
|
69 |
+
vectordb.persist() # Persist ChromaDB
|
70 |
+
|
71 |
+
# Load persisted Chroma database
|
72 |
+
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
73 |
+
|
74 |
+
# Perform question answering
|
75 |
+
if prompt:
|
76 |
+
docs = vectordb.similarity_search(prompt)
|
77 |
+
if docs:
|
78 |
+
text = docs[0].page_content
|
79 |
+
input_prompt = "You are an expert in understanding text contents. You will receive an input PDF file and you will have to answer questions based on the input file."
|
80 |
+
response = get_llm_response(input_prompt, text, prompt)
|
81 |
+
return response
|
82 |
+
else:
|
83 |
+
return "No relevant documents found."
|
84 |
+
else:
|
85 |
+
return "Please enter a question."
|
86 |
+
except Exception as e:
|
87 |
+
return f"Error occurred during text processing: {e}"
|
88 |
+
else:
|
89 |
+
return "Please upload a PDF file."
|
90 |
+
|
91 |
+
|
92 |
+
def main():
|
93 |
+
gr.Interface(
|
94 |
+
fn=process_pdf,
|
95 |
+
inputs=[gr.components.File(type="file", label="Upload PDF File"),
|
96 |
+
gr.components.Textbox(lines=2, placeholder="Ask a Question")],
|
97 |
+
outputs="text",
|
98 |
+
title="PDF Chatbot",
|
99 |
+
description="Upload a PDF file and ask questions about its content."
|
100 |
+
).launch()
|
101 |
+
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
+
main()
|