Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,9 @@ from chromadb.utils import embedding_functions
|
|
4 |
from PyPDF2 import PdfReader
|
5 |
from gradio_client import Client
|
6 |
|
7 |
-
|
8 |
-
# Starte ChromaDB
|
9 |
# Initialisiere ChromaDB
|
10 |
-
|
11 |
-
|
12 |
collection_name = "pdf_collection"
|
13 |
collection = client_chroma.get_or_create_collection(name=collection_name)
|
14 |
|
@@ -16,34 +14,14 @@ collection = client_chroma.get_or_create_collection(name=collection_name)
|
|
16 |
embedding_function = embedding_functions.DefaultEmbeddingFunction()
|
17 |
|
18 |
client = Client("Qwen/Qwen2.5-72B-Instruct")
|
19 |
-
def ask_llm(llm_prompt_input):
|
20 |
-
# Erstelle Embedding für den Prompt
|
21 |
-
query_embedding = embedding_function([llm_prompt_input])[0]
|
22 |
-
|
23 |
-
# Führe die Ähnlichkeitssuche durch
|
24 |
-
results = collection.query(
|
25 |
-
query_embeddings=[query_embedding],
|
26 |
-
n_results=3
|
27 |
-
)
|
28 |
-
|
29 |
-
# Formatiere die Ergebnisse
|
30 |
-
formatted_results = []
|
31 |
-
for i, doc in enumerate(results["documents"][0]):
|
32 |
-
metadata = results["metadatas"][0][i]
|
33 |
-
filename = metadata["filename"]
|
34 |
-
formatted_results.append(f"{doc}\n")
|
35 |
-
|
36 |
-
#queri = "\n".join(formatted_results)
|
37 |
-
#return "\n".join(formatted_results)
|
38 |
-
print(join(formatted_results))
|
39 |
-
|
40 |
result = client.predict(
|
41 |
-
query=llm_prompt_input,
|
42 |
history=[],
|
43 |
system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
|
44 |
api_name="/model_chat"
|
45 |
)
|
46 |
-
|
47 |
return result
|
48 |
|
49 |
def process_pdf(file):
|
|
|
4 |
from PyPDF2 import PdfReader
|
5 |
from gradio_client import Client
|
6 |
|
|
|
|
|
7 |
# Initialisiere ChromaDB
|
8 |
+
client_chroma = chromadb.Client()
|
9 |
+
#client_croma = chromadb.PersistentClient(path="/")
|
10 |
collection_name = "pdf_collection"
|
11 |
collection = client_chroma.get_or_create_collection(name=collection_name)
|
12 |
|
|
|
14 |
embedding_function = embedding_functions.DefaultEmbeddingFunction()
|
15 |
|
16 |
client = Client("Qwen/Qwen2.5-72B-Instruct")
|
17 |
+
def ask_llm(llm_prompt_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
result = client.predict(
|
19 |
+
query=f"{llm_prompt_input}",
|
20 |
history=[],
|
21 |
system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
|
22 |
api_name="/model_chat"
|
23 |
)
|
24 |
+
print(result)
|
25 |
return result
|
26 |
|
27 |
def process_pdf(file):
|