mgokg commited on
Commit
e8f6e12
·
verified ·
1 Parent(s): 18302c2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -25
app.py CHANGED
@@ -12,7 +12,6 @@ import pyttsx3
12
  api_key = os.getenv('groq')
13
  # Initialisiere ChromaDB
14
  client_chroma = chromadb.Client()
15
- #client_croma = chromadb.PersistentClient(path="/")
16
  collection_name = "pdf_collection"
17
  collection = client_chroma.get_or_create_collection(name=collection_name)
18
 
@@ -78,21 +77,9 @@ def ask_llm(llm_prompt_input):
78
 
79
  # Füge die formatierten Ergebnisse zum Prompt hinzu
80
  enriched_prompt = f"{llm_prompt_input}\n\n### Verwandte Informationen:\n{''.join(formatted_results)}"
81
- #print(enriched_prompt)
82
  result = update(enriched_prompt)
83
  result=gr.Markdown(result)
84
  return result
85
- # Führe die Abfrage des LLM durch
86
- result = client.predict(
87
- query=enriched_prompt,
88
- history=[],
89
- system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
90
- api_name="/model_chat"
91
- )
92
- result = result[1]
93
- result = result[0][1]
94
- result=gr.Markdown(result)
95
- return result
96
 
97
  def process_pdf(file):
98
  # Read the PDF content
@@ -182,25 +169,15 @@ with gr.Blocks() as speech:
182
  sr_outputs = gr.Textbox(label="Antwort")
183
  with gr.Row():
184
  sr_inputs = gr.Microphone(type="filepath")
185
-
186
- #sr_inputs = gr.Microphone(type="filepath")
187
- #with gr.Row():
188
- #audio_button = gr.Button("audio")
189
- #audio_button.click(text_to_speech("guten tag wie geht es dir"))
190
  sr_inputs.change(transcribe_audio, inputs=sr_inputs, outputs=sr_outputs)
191
-
192
- #with gr.Row():
193
- #submit_button = gr.Button("rec")
194
-
195
- #submit_button.click(transcribe_audio, inputs=sr_inputs, outputs=sr_outputs)
196
-
197
 
198
  # Erstelle die Gradio-Schnittstelle
199
  with gr.Blocks() as demo:
200
  gr.TabbedInterface(
201
  [chat, upload, suche]
 
202
  )
203
 
204
-
205
  # Starte die Gradio-Anwendung
206
  demo.launch()
 
12
  api_key = os.getenv('groq')
13
  # Initialisiere ChromaDB
14
  client_chroma = chromadb.Client()
 
15
  collection_name = "pdf_collection"
16
  collection = client_chroma.get_or_create_collection(name=collection_name)
17
 
 
77
 
78
  # Füge die formatierten Ergebnisse zum Prompt hinzu
79
  enriched_prompt = f"{llm_prompt_input}\n\n### Verwandte Informationen:\n{''.join(formatted_results)}"
 
80
  result = update(enriched_prompt)
81
  result=gr.Markdown(result)
82
  return result
 
 
 
 
 
 
 
 
 
 
 
83
 
84
  def process_pdf(file):
85
  # Read the PDF content
 
169
  sr_outputs = gr.Textbox(label="Antwort")
170
  with gr.Row():
171
  sr_inputs = gr.Microphone(type="filepath")
172
+
 
 
 
 
173
  sr_inputs.change(transcribe_audio, inputs=sr_inputs, outputs=sr_outputs)
 
 
 
 
 
 
174
 
175
  # Erstelle die Gradio-Schnittstelle
176
  with gr.Blocks() as demo:
177
  gr.TabbedInterface(
178
  [chat, upload, suche]
179
+ ["Chat", "Upload", "Suche"]
180
  )
181
 
 
182
  # Starte die Gradio-Anwendung
183
  demo.launch()