Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,11 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
|
|
3 |
import google.generativeai as genai
|
4 |
-
import logging
|
5 |
-
import time
|
6 |
-
import backoff
|
7 |
-
import google.ai.generativelanguage as glm
|
8 |
-
|
9 |
-
# Configure Logging
|
10 |
-
logging.basicConfig(level=logging.ERROR, format='%(asctime)s - %(levelname)s - %(message)s')
|
11 |
|
12 |
# Load environment variables
|
13 |
-
|
14 |
-
genai.configure(api_key=os.environ["geminiapikey"])
|
15 |
-
except KeyError:
|
16 |
-
logging.error("Error: 'geminiapikey' environment variable not found.")
|
17 |
-
exit(1)
|
18 |
-
|
19 |
read_key = os.environ.get('HF_TOKEN', None)
|
20 |
|
21 |
custom_css = """
|
@@ -25,14 +15,14 @@ custom_css = """
|
|
25 |
background: #202020;
|
26 |
padding: 20px;
|
27 |
color: white;
|
28 |
-
border:
|
29 |
}
|
30 |
"""
|
31 |
|
32 |
def predict(prompt):
|
33 |
# Create the model
|
34 |
generation_config = {
|
35 |
-
"temperature": 0.
|
36 |
"top_p": 0.95,
|
37 |
"top_k": 40,
|
38 |
"max_output_tokens": 2048,
|
@@ -40,36 +30,32 @@ def predict(prompt):
|
|
40 |
}
|
41 |
|
42 |
model = genai.GenerativeModel(
|
43 |
-
model_name="gemini-1.5-pro",
|
|
|
44 |
generation_config=generation_config,
|
45 |
)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
function_declarations=[],
|
51 |
-
search_queries=[prompt],
|
52 |
)
|
53 |
-
|
54 |
-
response =
|
55 |
-
|
56 |
-
|
57 |
-
)
|
58 |
-
|
59 |
-
if response and response.text:
|
60 |
-
return response.text
|
61 |
|
62 |
# Create the Gradio interface
|
63 |
with gr.Blocks(css=custom_css) as demo:
|
64 |
with gr.Row():
|
65 |
-
details_output = gr.Markdown(label="answer", elem_id="md")
|
66 |
-
|
67 |
-
ort_input = gr.Textbox(label="prompt", placeholder="ask anything...")
|
68 |
with gr.Row():
|
69 |
-
|
|
|
|
|
70 |
|
71 |
# Connect the button to the function
|
72 |
-
button.click(fn=predict, inputs=ort_input, outputs=details_output)
|
73 |
|
74 |
# Launch the Gradio application
|
75 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
import os
|
4 |
+
import json
|
5 |
import google.generativeai as genai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Load environment variables
|
8 |
+
genai.configure(api_key=os.environ["geminiapikey"])
|
|
|
|
|
|
|
|
|
|
|
9 |
read_key = os.environ.get('HF_TOKEN', None)
|
10 |
|
11 |
custom_css = """
|
|
|
15 |
background: #202020;
|
16 |
padding: 20px;
|
17 |
color: white;
|
18 |
+
border: 1 px solid white;
|
19 |
}
|
20 |
"""
|
21 |
|
22 |
def predict(prompt):
|
23 |
# Create the model
|
24 |
generation_config = {
|
25 |
+
"temperature": 0.3,
|
26 |
"top_p": 0.95,
|
27 |
"top_k": 40,
|
28 |
"max_output_tokens": 2048,
|
|
|
30 |
}
|
31 |
|
32 |
model = genai.GenerativeModel(
|
33 |
+
#model_name="gemini-1.5-pro",
|
34 |
+
model_name="gemini-2.0-flash-exp",
|
35 |
generation_config=generation_config,
|
36 |
)
|
37 |
|
38 |
+
chat_session = model.start_chat(
|
39 |
+
history=[
|
40 |
+
]
|
|
|
|
|
41 |
)
|
42 |
+
|
43 |
+
response = chat_session.send_message(prompt)
|
44 |
+
#response = model.generate_content(contents=prompt, tools='google_search_retrieval')
|
45 |
+
return response.text
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Create the Gradio interface
|
48 |
with gr.Blocks(css=custom_css) as demo:
|
49 |
with gr.Row():
|
50 |
+
details_output = gr.Markdown(label="answer", elem_id="md")
|
51 |
+
#details_output = gr.Textbox(label="Ausgabe", value = f"\n\n\n\n")
|
|
|
52 |
with gr.Row():
|
53 |
+
ort_input = gr.Textbox(label="prompt", placeholder="ask anything...")
|
54 |
+
with gr.Row():
|
55 |
+
button = gr.Button("Senden")
|
56 |
|
57 |
# Connect the button to the function
|
58 |
+
button.click(fn=predict, inputs=ort_input, outputs=details_output)
|
59 |
|
60 |
# Launch the Gradio application
|
61 |
demo.launch()
|