File size: 6,308 Bytes
5c8029a
e4188aa
f43c677
e4188aa
f43c677
 
e4188aa
 
 
 
f43c677
 
e4188aa
f43c677
e4188aa
 
 
 
 
f43c677
 
 
 
 
 
 
 
 
 
e4188aa
f43c677
63115d0
e4188aa
63115d0
 
f42289c
63115d0
f43c677
3497472
e4188aa
f43c677
e4188aa
f43c677
e4188aa
 
63115d0
 
 
 
 
 
 
 
 
 
 
 
 
 
f43c677
 
e4188aa
 
 
f43c677
 
e4188aa
 
f43c677
 
e4188aa
 
f43c677
 
 
e4188aa
 
f43c677
 
 
 
e4188aa
e39adc8
f43c677
 
 
 
63115d0
 
 
 
f43c677
69236b5
f43c677
 
69236b5
d44f598
63115d0
f43c677
 
d44f598
 
 
f43c677
63115d0
f43c677
63115d0
f43c677
 
 
 
d44f598
 
 
 
 
63115d0
69236b5
f43c677
69236b5
f43c677
 
 
 
 
 
 
 
 
 
 
 
 
 
69236b5
 
 
 
 
f43c677
95280e4
f43c677
 
e4188aa
f43c677
 
e4188aa
 
3497472
f43c677
3497472
f43c677
 
 
cf4cf66
3497472
f43c677
 
 
 
 
 
 
 
 
 
 
 
 
 
63115d0
f43c677
 
 
 
63115d0
f43c677
 
3497472
 
 
e4188aa
f43c677
 
 
 
 
 
 
 
 
 
 
 
 
63115d0
 
 
 
 
 
f43c677
 
 
 
 
 
 
 
 
3497472
e4188aa
 
f43c677
 
e4188aa
3497472
e4188aa
f43c677
e4188aa
f43c677
63115d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import asyncio
import base64
import json
import os
import pathlib
from typing import AsyncGenerator, Literal

import gradio as gr
import numpy as np
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from fastrtc import (
    AsyncStreamHandler,
    Stream,
    get_cloudflare_turn_credentials_async,
    wait_for_item,
)
from google import genai
from google.genai.types import (
    LiveConnectConfig,
    PrebuiltVoiceConfig,
    SpeechConfig,
    VoiceConfig,
    Tool,
    GoogleSearch,
    Content,
    Part,
)
from gradio.utils import get_space
from pydantic import BaseModel
from langdetect import detect, DetectorFactory

# Make langdetect results consistent
DetectorFactory.seed = 0

current_dir = pathlib.Path(__file__).parent
load_dotenv()


def encode_audio(data: np.ndarray) -> str:
    """Encode Audio data to send to the server"""
    return base64.b64encode(data.tobytes()).decode("UTF-8")


def detect_language_code(text: str) -> str:
    """Detect if the text is in English or Spanish and return Google TTS code"""
    try:
        lang = detect(text)
        if lang.startswith("es"):
            return "es-ES"  # Spanish
        elif lang.startswith("en"):
            return "en-US"  # English
        else:
            return "en-US"  # default
    except Exception:
        return "en-US"


class GeminiHandler(AsyncStreamHandler):
    """Handler for the Gemini API"""

    def __init__(
        self,
        expected_layout: Literal["mono"] = "mono",
        output_sample_rate: int = 24000,
    ) -> None:
        super().__init__(
            expected_layout,
            output_sample_rate,
            input_sample_rate=16000,
        )
        self.input_queue: asyncio.Queue = asyncio.Queue()
        self.output_queue: asyncio.Queue = asyncio.Queue()
        self.quit: asyncio.Event = asyncio.Event()

    def copy(self) -> "GeminiHandler":
        return GeminiHandler(
            expected_layout="mono",
            output_sample_rate=self.output_sample_rate,
        )

    async def start_up(self):
        if not self.phone_mode:
            await self.wait_for_args()
            api_key, voice_name, system_message = self.latest_args[1:]
        else:
            api_key, voice_name, system_message = None, "Kore", "You are a helpful assistant."

        # Auto-detect language from system_message
        lang_code = detect_language_code(system_message)

        client = genai.Client(
            api_key=api_key or os.getenv("GEMINI_API_KEY"),
            http_options={"api_version": "v1alpha"},
        )

        tools = [Tool(google_search=GoogleSearch())]
        system_instruction = Content(
            parts=[Part.from_text(text=f"{system_message}")],
            role="user"
        )

        config = LiveConnectConfig(
            response_modalities=["AUDIO"],
            speech_config=SpeechConfig(
                language_code=lang_code,
                voice_config=VoiceConfig(
                    prebuilt_voice_config=PrebuiltVoiceConfig(
                        voice_name=voice_name,
                    )
                )
            ),
            tools=tools,
            system_instruction=system_instruction,
        )

        async with client.aio.live.connect(
            model="gemini-2.0-flash-exp", config=config
        ) as session:
            async for audio in session.start_stream(
                stream=self.stream(), mime_type="audio/pcm"
            ):
                if audio.data:
                    array = np.frombuffer(audio.data, dtype=np.int16)
                    self.output_queue.put_nowait((self.output_sample_rate, array))

    async def stream(self) -> AsyncGenerator[bytes, None]:
        while not self.quit.is_set():
            try:
                audio = await asyncio.wait_for(self.input_queue.get(), 0.1)
                yield audio
            except (asyncio.TimeoutError, TimeoutError):
                pass

    async def receive(self, frame: tuple[int, np.ndarray]) -> None:
        _, array = frame
        array = array.squeeze()
        audio_message = encode_audio(array)
        self.input_queue.put_nowait(audio_message)

    async def emit(self) -> tuple[int, np.ndarray] | None:
        return await wait_for_item(self.output_queue)

    def shutdown(self) -> None:
        self.quit.set()


stream = Stream(
    modality="audio",
    mode="send-receive",
    handler=GeminiHandler(),
    rtc_configuration=get_cloudflare_turn_credentials_async if get_space() else None,
    concurrency_limit=5 if get_space() else None,
    time_limit=900 if get_space() else None,
    additional_inputs=[
        gr.Textbox(
            label="API Key",
            type="password",
            value=os.getenv("GEMINI_API_KEY") if not get_space() else "",
        ),
        gr.Dropdown(
            label="Voice",
            choices=[
                "Puck",
                "Charon",
                "Kore",
                "Fenrir",
                "Aoede",
            ],
            value="Kore",
        ),
        gr.Textbox(
            label="System Message",
            placeholder="Enter system instructions for the AI...",
            value="You are a helpful assistant who answers questions and helps with tasks.",
            lines=3,
        ),
    ],
)


class InputData(BaseModel):
    webrtc_id: str
    voice_name: str
    api_key: str
    system_message: str


app = FastAPI()
stream.mount(app)


@app.post("/input_hook")
async def _(body: InputData):
    stream.set_input(
        body.webrtc_id,
        body.api_key,
        body.voice_name,
        body.system_message,
    )
    return {"status": "ok"}


@app.get("/")
async def index():
    rtc_config = await get_cloudflare_turn_credentials_async() if get_space() else None
    html_content = (current_dir / "index.html").read_text()
    html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
    return HTMLResponse(content=html_content)


if __name__ == "__main__":
    import os

    if (mode := os.getenv("MODE")) == "UI":
        stream.ui.launch(server_port=7860)
    elif mode == "PHONE":
        stream.fastphone(host="0.0.0.0", port=7860)
    else:
        import uvicorn
        uvicorn.run(app, host="0.0.0.0", port=7860)