File size: 5,744 Bytes
54e8a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os.path
from torchvision.models import resnet50
from torchvision.transforms import transforms
from PIL import Image
import torch.nn as nn
import torch
import pickle
import matplotlib.pyplot as plt
from src.utils.path_utils import get_project_root


class ImageSimilarity:
    def __init__(self):
        self.model = resnet50(weights="DEFAULT")
        self.model = nn.Sequential(
            *list(self.model.children())[:-1]
        )  # Ignoring the last classification layer
        self.model.eval()
        self.transform = transforms.Compose(
            [
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                ),
            ]
        )

    def extract_features(self, image_stream):
        image = Image.open(image_stream).convert("RGB")
        image = self.transform(image).unsqueeze(0)

        with torch.no_grad():
            features = self.model(image)
            features = features.flatten()
        return features

    def similarity(self, features1, features2):
        # Calculating cosine similarity
        cos = nn.CosineSimilarity(dim=1, eps=1e-6)
        similarity = cos(features1.unsqueeze(0), features2.unsqueeze(0))
        return similarity.item()


class ImageCorpus:
    def __init__(self, feature_corpus_path):
        self.feature_corpus_path = feature_corpus_path
        self.feature_dict = self.load_features()
        self.feature_extractor = ImageSimilarity()

    def load_features(self):
        try:
            with open(self.feature_corpus_path, "rb") as f:
                return pickle.load(f)
        except (EOFError, pickle.UnpicklingError):
            print(
                "Warning: Pickle file is empty or corrupted. Initializing empty feature dict."
            )

    def save_features(self):
        with open(self.feature_corpus_path, "wb") as f:
            pickle.dump(self.feature_dict, f)

    def add_image(self, image_path):
        features = self.feature_extractor.extract_features(image_path)
        self.feature_dict[image_path] = features
        self.save_features()

    def create_feature_corpus(self, image_dir):
        for image_name in os.listdir(image_dir):
            image_path = os.path.join(image_dir, image_name)
            if os.path.isfile(image_path) and image_path.lower().endswith(
                (".png", ".jpg", ".jpeg")
            ):
                features = self.feature_extractor.extract_features(image_path)
                self.feature_dict[image_path] = features

        self.save_features()

    def retrieve_similar_images(self, query_image_path, top_k=50):
        query_features = self.feature_extractor.extract_features(query_image_path)
        similarity_scores = {}

        for image_name, corpus_feature in self.feature_dict.items():
            similarity = self.feature_extractor.similarity(
                query_features, corpus_feature
            )
            similarity_scores[image_name] = similarity

        retrieved_images = sorted(
            similarity_scores.items(), key=lambda x: x[1], reverse=True
        )

        # Filter out identical images (based on scores)
        unique_scores = set()
        filtered_images = []

        for image_path, score in retrieved_images:
            if score not in unique_scores:  # Check if this score is already added
                unique_scores.add(score)
                filtered_images.append((image_path, score))

            if len(filtered_images) == top_k:  # Stop once we have top_k unique images
                break

        return filtered_images


def visualize_retrieved_images(query_image_path, top_retrievals):
    # Load query image

    query_image = Image.open(query_image_path).convert("RGB")
    project_base = get_project_root()
    # Load retrieved images and their scores
    retrieved_images = [
        (Image.open(os.path.join(project_base, img_path)).convert("RGB"), score)
        for img_path, score in top_retrievals
    ]

    # Set up the grid for visualization
    total_retrieved = len(retrieved_images)
    rows = 2 + (total_retrieved - 1) // 5  # 1 row for query + rows for 5 images per row
    cols = 5

    # Set figure size
    plt.figure(figsize=(20, rows * 4))

    # Plot query image at the top row (centered in row of 5)
    plt.subplot(rows, cols, (cols // 2) + 1)  # Center in the first row
    plt.imshow(query_image)
    plt.title("Query Image", fontsize=12)
    plt.axis("off")

    # Plot retrieved images
    for idx, (img, score) in enumerate(retrieved_images):
        plt.subplot(rows, cols, cols + idx + 1)  # Start plotting after the query image
        plt.imshow(img)
        plt.title(f"Rank: {idx+1}\nScore: {score:.4f}", fontsize=10)
        plt.axis("off")

    plt.tight_layout()
    plt.show()


if __name__ == "__main__":
    project_root = get_project_root()
    image_feature = os.path.join(project_root, "evidence_features.pkl")
    image_dir = os.path.join(
        project_root, "data", "raw", "factify", "extracted", "images", "evidence_corpus"
    )  # Replace with your base directory path

    query_image_path = os.path.join(
        project_root,
        "data",
        "raw",
        "factify",
        "extracted",
        "images",
        "train",
        "1_claim.jpg",
    )

    image_corpus = ImageCorpus(image_feature)
    # corpus = image_corpus.create_feature_corpus(image_dir)
    print(list(image_corpus.feature_dict.keys())[0])

    top_retrievals = image_corpus.retrieve_similar_images(query_image_path, top_k=5)
    print(top_retrievals)
    visualize_retrieved_images(query_image_path, top_retrievals)