misinfo / app.py
gyigit's picture
update
54e8a79
raw
history blame
16.2 kB
import streamlit as st
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
import pandas as pd
import os
from evaluate import MisinformationPredictor
from src.evidence.im2im_retrieval import ImageCorpus
from src.evidence.text2text_retrieval import SemanticSimilarity
from src.utils.path_utils import get_project_root
from typing import List, Optional, Tuple
from dataclasses import dataclass
# Initialize BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-large"
)
PROJECT_ROOT = get_project_root()
@dataclass
class Evidence:
evidence_id: str
dataset: str
text: Optional[str]
image: Optional[Image.Image]
caption: Optional[str]
image_path: Optional[str]
classification_result_all: Optional[Tuple[str, str, str, str]] = None
classification_result_final: Optional[str] = None
CLASSIFICATION_CATEGORIES = ["support", "refute", "not_enough_information"]
def generate_caption(image: Image.Image) -> str:
"""Generates a caption for a given image."""
try:
with st.spinner("Generating caption..."):
inputs = processor(image, return_tensors="pt")
output = model.generate(**inputs)
return processor.decode(output[0], skip_special_tokens=True)
except Exception as e:
st.error(f"Error generating caption: {e}")
return ""
def enrich_text_with_caption(text: str, image_caption: str) -> str:
"""Appends the image caption to the given text."""
if image_caption:
return f"{text}. {image_caption}"
return text
@st.cache_data
def get_train_df():
data_dir = os.path.join(PROJECT_ROOT, "data", "preprocessed")
train_csv_path = os.path.join(data_dir, "train_enriched.csv")
return pd.read_csv(train_csv_path)
@st.cache_data
def get_test_df():
data_dir = os.path.join(PROJECT_ROOT, "data", "preprocessed")
train_csv_path = os.path.join(data_dir, "test_enriched.csv")
return pd.read_csv(train_csv_path)
@st.cache_data
def get_semantic_similarity(
train_embeddings_file: str,
test_embeddings_file: str,
train_df: pd.DataFrame,
test_df: pd.DataFrame,
):
return SemanticSimilarity(
train_embeddings_file=train_embeddings_file,
test_embeddings_file=test_embeddings_file,
train_df=train_df,
test_df=test_df,
)
def retrieve_evidences_by_text(
query: str,
top_k: int = 5,
) -> List[Evidence]:
"""
Retrieves evidence rows from preloaded embeddings and CSV data using semantic similarity.
Args:
query (str): The query text to perform the search.
top_k (int): Number of top results to retrieve.
Returns:
List[Evidence]: A list of retrieved evidence objects.
"""
train_embeddings_file = os.path.join(PROJECT_ROOT, "train_embeddings.h5")
test_embeddings_file = os.path.join(PROJECT_ROOT, "test_embeddings.h5")
similarity = get_semantic_similarity(
train_embeddings_file=train_embeddings_file,
test_embeddings_file=test_embeddings_file,
train_df=get_train_df(),
test_df=get_test_df(),
)
evidences = []
try:
# Perform semantic search across both train and test datasets
results = similarity.search(query=query, top_k=top_k)
# Retrieve evidence rows based on the search results
for evidence_id, score in results:
# Determine whether the ID belongs to train or test set
if evidence_id.startswith("train_"):
df = similarity.train_csv
elif evidence_id.startswith("test_"):
df = similarity.test_csv
else:
continue # Skip invalid IDs
# Extract the row by ID
row = df[df["id"] == int(evidence_id.split("_")[1])].iloc[0]
evidence_text = row.get("evidence_enriched")
evidence_image_caption = row.get("evidence_image_caption")
evidence_image_path = row.get("evidence_image")
evidence_image = None
full_image_path = None
# Load the image if a valid path is provided
if pd.notna(evidence_image_path):
full_image_path = os.path.join(PROJECT_ROOT, evidence_image_path)
try:
evidence_image = Image.open(full_image_path).convert("RGB")
except Exception as e:
st.error(f"Failed to load image {evidence_image_path}: {e}")
evidence_id_number = evidence_id.split("_")[1]
evidence_dataset = evidence_id.split("_")[0]
# Create an Evidence object
evidences.append(
Evidence(
text=evidence_text,
image=evidence_image,
caption=evidence_image_caption,
evidence_id=evidence_id_number,
dataset=evidence_dataset,
image_path=full_image_path,
)
)
except Exception as e:
st.error(f"Error performing semantic search: {e}")
return evidences
@st.cache_data
def get_image_corpus(image_features):
return ImageCorpus(image_features)
def retrieve_evidences_by_image(
image_path: str,
top_k: int = 5,
) -> List[Evidence]:
"""
Retrieves evidence rows from preloaded embeddings and CSV data using semantic similarity.
Args:
query (str): The query text to perform the search.
top_k (int): Number of top results to retrieve.
Returns:
List[Evidence]: A list of retrieved evidence objects.
"""
image_features = os.path.join(PROJECT_ROOT, "evidence_features.pkl")
image_corpus = get_image_corpus(image_features)
evidences = []
try:
# Perform semantic search across both train and test datasets
results = image_corpus.retrieve_similar_images(image_path, top_k=top_k)
# Retrieve evidence rows based on the search results
for evidence_path, score in results:
evidence_id = evidence_path.split("/")[-1]
evidence_id_number = evidence_id.split("_")[0]
# Determine whether the ID belongs to train or test set
if "train" in evidence_path:
df = get_train_df()
elif "test" in evidence_path:
df = get_test_df()
else:
continue # Skip invalid IDs
# Extract the row by ID
row = df[df["id"] == int(evidence_id_number)].iloc[0]
evidence_text = row.get("evidence_enriched")
evidence_image_caption = row.get("evidence_image_caption")
evidence_image_path = row.get("evidence_image")
evidence_image = None
full_image_path = None
# Load the image if a valid path is provided
if pd.notna(evidence_image_path):
full_image_path = os.path.join(PROJECT_ROOT, evidence_image_path)
try:
evidence_image = Image.open(full_image_path).convert("RGB")
except Exception as e:
st.error(f"Failed to load image {evidence_image_path}: {e}")
# Create an Evidence object
evidences.append(
Evidence(
text=evidence_text,
image=evidence_image,
caption=evidence_image_caption,
dataset=evidence_path.split("/")[-2],
evidence_id=evidence_id_number,
image_path=full_image_path,
)
)
except Exception as e:
st.error(f"Error performing semantic search: {e}")
return evidences
@st.cache_resource
def get_predictor():
return MisinformationPredictor(model_path="ckpts/model.pt", device="cpu")
def classify_evidence(
claim_text: str, claim_image_path: str, evidence_text: str, evidence_image_path: str
) -> Tuple[str, str, str, str]:
"""Assigns a random classification to each evidence."""
predictor = get_predictor()
predictions = predictor.evaluate(
claim_text, claim_image_path, evidence_text, evidence_image_path
)
if predictions:
return (
predictions.get("text_text", "not_enough_information"),
predictions.get("text_image", "not_enough_information"),
predictions.get("image_text", "not_enough_information"),
predictions.get("image_image", "not_enough_information"),
)
else:
return (
"not_enough_information",
"not_enough_information",
"not_enough_information",
"not_enough_information",
)
def display_evidence_tab(evidences: List[Evidence], tab_label: str):
"""Displays evidence in a tabbed format."""
with st.container():
for index, evidence in enumerate(evidences):
with st.container():
st.subheader(f"Evidence {index + 1}")
st.write(f"Evidence Dataset: {evidence.dataset}")
st.write(f"Evidence ID: {evidence.evidence_id}")
if evidence.image:
st.image(
evidence.image,
caption="Evidence Image",
use_container_width=True,
)
st.text_area(
"Evidence Caption",
value=evidence.caption or "No caption available.",
height=100,
key=f"caption_{tab_label}_{index}",
disabled=True,
)
st.text_area(
"Evidence Text",
value=evidence.text or "No text available.",
height=100,
key=f"text_{tab_label}_{index}",
disabled=True,
)
if evidence.classification_result_all:
st.write("**Classification:**")
st.write(f"**text|text:** {evidence.classification_result_all[0]}")
st.write(f"**text|image:** {evidence.classification_result_all[1]}")
st.write(f"**image|text:** {evidence.classification_result_all[2]}")
st.write(
f"**image|image:** {evidence.classification_result_all[3]}"
)
st.write(
f"**Final classification result:** {evidence.classification_result_final}"
)
def get_final_classification(results: Tuple[str, str, str, str]) -> str:
text_text = results[0]
text_image = results[1]
image_text = results[2]
image_image = results[3]
# Helper function to determine the final classification based on two inputs
def resolve_classification(val1: str, val2: str) -> str:
if val1 == val2 and val1 in {"support", "refute"}:
return val1
if (val1 in {"support", "refute"} and val2 == "not_enough_information") or (
val2 in {"support", "refute"} and val1 == "not_enough_information"
):
return val1 if val1 != "not_enough_information" else val2
return "not_enough_information"
# Step 1: Check text_text and image_image
final_result = resolve_classification(text_text, image_image)
if final_result != "not_enough_information":
return final_result
# Step 2: Check text_image and image_text
final_result = resolve_classification(text_image, image_text)
if final_result != "not_enough_information":
return final_result
# Step 3: If still undetermined, return "not_enough_information"
return "not_enough_information"
def main():
st.title("Multimodal Evidence-Based Misinformation Classification")
st.write("Upload claims that have image and/or text content to verify.")
# File uploader for images
uploaded_image = st.file_uploader(
"Upload an image (1 max)", type=["jpg", "jpeg", "png"], key="image_uploader"
)
if uploaded_image:
try:
image = Image.open(uploaded_image).convert("RGB")
st.image(image, caption="Uploaded Image", use_container_width=True)
except Exception as e:
st.error(f"Failed to display the image: {e}")
# Text input field
input_text = st.text_area("Enter text (max 4096 characters)", "", max_chars=4096)
# Sliders for top_k values
col1, col2 = st.columns(2)
with col1:
top_k_text = st.slider(
"Top-k Text Evidences", min_value=1, max_value=5, value=2, key="top_k_text"
)
with col2:
top_k_image = st.slider(
"Top-k Image Evidences",
min_value=1,
max_value=5,
value=2,
key="top_k_image",
)
# Generate Enriched Text button
if st.button("Verify Claim"):
if not uploaded_image and not input_text:
st.warning("Please upload an image or enter text.")
return
progress = st.progress(0)
# Step 1: Generate caption
progress.progress(10)
st.write("### Step 1: Generating caption...")
image_caption = ""
if uploaded_image:
image_caption = generate_caption(image)
st.write("**Generated Image Caption:**", image_caption)
# Step 2: Enrich text
progress.progress(40)
st.write("### Step 2: Enriching text...")
enriched_text = enrich_text_with_caption(input_text, image_caption)
st.write("**Enriched Text:**")
st.write(enriched_text)
# Step 3: Retrieve evidences by text
progress.progress(50)
st.write("### Step 3: Retrieving evidences by text...")
if input_text:
text_evidences = retrieve_evidences_by_text(enriched_text, top_k=top_k_text)
st.write(f"Retrieved {len(text_evidences)} text evidences.")
else:
text_evidences = None
st.write("Text modality is missing from the input claim!")
# Step 4: Retrieve evidences by image
progress.progress(70)
st.write("### Step 4: Retrieving evidences by image...")
if uploaded_image:
image_evidences = retrieve_evidences_by_image(
uploaded_image, top_k=top_k_image
)
st.write(f"Retrieved {len(image_evidences)} image evidences.")
else:
image_evidences = None
st.write("Image modality is missing from the input claim!")
# Step 5: Classify evidences
progress.progress(90)
st.write("### Step 5: Verifying claim with retrieved evidences...")
for evidence in (text_evidences or []) + (image_evidences or []):
a, b, c, d = classify_evidence(
claim_text=enriched_text,
claim_image_path=uploaded_image,
evidence_text=evidence.text,
evidence_image_path=evidence.image_path,
)
evidence.classification_result_all = a, b, c, d
evidence.classification_result_final = get_final_classification(
evidence.classification_result_all
)
# Step 6: Display evidences
progress.progress(100)
if text_evidences or image_evidences:
st.write("## Results")
tabs = st.tabs(["Text Evidences", "Image Evidences"])
with tabs[0]:
if text_evidences:
st.write("### Text Evidences")
display_evidence_tab(text_evidences, "text")
else:
st.write("Text modality is missing from the input claim!")
with tabs[1]:
if image_evidences:
st.write("### Image Evidences")
display_evidence_tab(image_evidences, "image")
else:
st.write("Image modality is missing from the input claim!")
if __name__ == "__main__":
main()