mherrador commited on
Commit
010715e
·
verified ·
1 Parent(s): 493f1b7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+
5
+ # Load your model and tokenizer WITHOUT 4-bit quantization
6
+ model_name = "mherrador/CE5.0_expert"
7
+ device = torch.device("cpu")
8
+
9
+ model = AutoModelForCausalLM.from_pretrained(
10
+ model_name,
11
+ # No quantization_config here
12
+ trust_remote_code=True,
13
+ ).to(device)
14
+
15
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
16
+
17
+ # Function to generate recommendations
18
+ def generate_recommendations(input_text):
19
+ inputs = tokenizer(input_text, return_tensors="pt").to(device) # Move input to device
20
+ outputs = model.generate(**inputs, max_new_tokens=128)
21
+ recommendations = tokenizer.batch_decode(outputs)[0]
22
+ return recommendations
23
+
24
+ # Create the Gradio interface
25
+ iface = gr.Interface(
26
+ fn=generate_recommendations,
27
+ inputs=gr.Textbox(lines=5, placeholder="Enter your questions here..."),
28
+ outputs=gr.Textbox(lines=10),
29
+ title="Circular Economy Recommender",
30
+ description="Enter your questions about circular economy practices to get recommendations.",
31
+ )
32
+
33
+ # Launch the interface
34
+ iface.launch()