Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
|
3 |
import torch
|
4 |
|
5 |
# Load your model and tokenizer using the adapter weights
|
6 |
-
model_name = "mherrador/CE5.0_expert_v2"
|
7 |
bnb_config = BitsAndBytesConfig(
|
8 |
load_in_4bit=True,
|
9 |
bnb_4bit_use_double_quant=True,
|
@@ -11,17 +11,21 @@ bnb_config = BitsAndBytesConfig(
|
|
11 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
12 |
)
|
13 |
|
|
|
|
|
|
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
15 |
model_name,
|
16 |
quantization_config=bnb_config,
|
17 |
-
device_map="auto",
|
18 |
trust_remote_code=True,
|
19 |
-
)
|
|
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
|
22 |
# Function to generate recommendations
|
23 |
def generate_recommendations(input_text):
|
24 |
-
inputs = tokenizer(input_text, return_tensors="pt").to(
|
25 |
outputs = model.generate(**inputs, max_new_tokens=128)
|
26 |
recommendations = tokenizer.batch_decode(outputs)[0]
|
27 |
return recommendations
|
|
|
3 |
import torch
|
4 |
|
5 |
# Load your model and tokenizer using the adapter weights
|
6 |
+
model_name = "mherrador/CE5.0_expert_v2"
|
7 |
bnb_config = BitsAndBytesConfig(
|
8 |
load_in_4bit=True,
|
9 |
bnb_4bit_use_double_quant=True,
|
|
|
11 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
12 |
)
|
13 |
|
14 |
+
# Explicitly set device to CPU
|
15 |
+
device = torch.device("cpu")
|
16 |
+
|
17 |
model = AutoModelForCausalLM.from_pretrained(
|
18 |
model_name,
|
19 |
quantization_config=bnb_config,
|
20 |
+
# device_map="auto", # Let Transformers choose the best device
|
21 |
trust_remote_code=True,
|
22 |
+
).to(device) # Move model to the specified device
|
23 |
+
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
|
26 |
# Function to generate recommendations
|
27 |
def generate_recommendations(input_text):
|
28 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(device) # Move input to device
|
29 |
outputs = model.generate(**inputs, max_new_tokens=128)
|
30 |
recommendations = tokenizer.batch_decode(outputs)[0]
|
31 |
return recommendations
|