mibrahimzia commited on
Commit
4038adb
·
verified ·
1 Parent(s): 7603999

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +17 -35
src/streamlit_app.py CHANGED
@@ -1,40 +1,22 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
5
 
6
- """
7
- # Welcome to Streamlit!
8
 
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
 
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
 
 
15
 
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
1
+ import os
2
+ from transformers import pipeline
 
3
  import streamlit as st
4
 
5
+ # Use local cache directory to avoid permission issues
6
+ os.environ['TRANSFORMERS_CACHE'] = '/app/cache'
7
 
8
+ # Create zero-shot classification pipeline
9
+ classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
 
10
 
11
+ # Streamlit UI
12
+ st.title("Zero-Shot Text Classifier")
13
+ text = st.text_area("Enter text to classify")
14
+ labels = st.text_input("Enter candidate labels (comma-separated)", "finance, education, health")
15
 
16
+ if st.button("Classify"):
17
+ if text and labels:
18
+ label_list = [l.strip() for l in labels.split(",")]
19
+ result = classifier(text, candidate_labels=label_list)
20
+ st.write(result)
21
+ else:
22
+ st.warning("Please enter both text and labels.")