File size: 1,484 Bytes
0ed2ee7
c5484f6
 
ee259c3
e07c4e9
3671cba
423e05a
 
 
 
 
 
 
cef2c6e
1a9d9e0
aa021ca
697988f
d687e0e
 
 
 
0ed2ee7
d687e0e
e07c4e9
cef2c6e
423e05a
 
cef2c6e
 
 
 
423e05a
 
cef2c6e
423e05a
cef2c6e
423e05a
 
 
 
 
 
 
 
 
 
 
 
 
 
cef2c6e
aa021ca
cef2c6e
 
423e05a
e07c4e9
22c4eb1
cef2c6e
0950a65
ee259c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

from fastapi import FastAPI,Body

import uvicorn
import json

from PIL import Image
import time
from constants import DESCRIPTION, LOGO
from model import get_pipeline
from utils import replace_background
from diffusers.utils import load_image
import base64
import io
app = FastAPI(name="mutilParam")
pipeline = get_pipeline()

#Endpoints 
#Root endpoints
@app.get("/")
def root():
    return {"API": "Sum of 2 Squares"}
    
@app.post("/img2img")
async def predict(prompt=Body(...),imgbase64data=Body(...)):
    MAX_QUEUE_SIZE = 4
    start = time.time()
    print("参数",imgbase64data,prompt)
    image_data = base64.b64decode(imgbase64data)
    image1 = Image.open(io.BytesIO(image_data))
    w, h = image1.size
    newW = 512
    newH = int(h * newW / w)
    img = image1.resize((newW, newH))  
    end1 = time.time()
    print("图像:", img.size)
    print("加载管道:", end1 - start)
    result = pipeline(
        prompt=prompt,
        image=img,
        strength=0.6,
        seed=10,
        width=256,
        height=256,
        guidance_scale=1,
        num_inference_steps=4,
    )
    output_image = result.images[0]
    end2 = time.time()
    print("测试",output_image)
    print("s生成完成:", end2 - end1)    
    # 将图片对象转换为bytes
    output_image_base64 = base64.b64encode(output_image.tobytes()).decode()
    return output_image_base64
        
    
@app.post("/predict")
async def predict(prompt=Body(...)):
  return f"您好,{prompt}"