Spaces:
Running
Running
File size: 7,568 Bytes
ab884f0 1e09c9a ab884f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
from app_settings import AppSettings
from utils import show_system_info
import constants
from argparse import ArgumentParser
from context import Context
from constants import APP_VERSION, LCM_DEFAULT_MODEL_OPENVINO
from models.interface_types import InterfaceType
from constants import DEVICE
from state import get_settings
import traceback
from fastapi import FastAPI,Body
import uvicorn
import json
import logging
from PIL import Image
import time
from diffusers.utils import load_image
import base64
import io
from datetime import datetime
from typing import Any
from backend.models.lcmdiffusion_setting import DiffusionTask
from frontend.utils import is_reshape_required
from concurrent.futures import ThreadPoolExecutor
context = Context(InterfaceType.WEBUI)
previous_width = 0
previous_height = 0
previous_model_id = ""
previous_num_of_images = 0
# parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
# parser.add_argument(
# "-s",
# "--share",
# action="store_true",
# help="Create sharable link(Web UI)",
# required=False,
# )
# group = parser.add_mutually_exclusive_group(required=False)
# group.add_argument(
# "-g",
# "--gui",
# action="store_true",
# help="Start desktop GUI",
# )
# group.add_argument(
# "-w",
# "--webui",
# action="store_true",
# help="Start Web UI",
# )
# group.add_argument(
# "-r",
# "--realtime",
# action="store_true",
# help="Start realtime inference UI(experimental)",
# )
# group.add_argument(
# "-v",
# "--version",
# action="store_true",
# help="Version",
# )
# parser.add_argument(
# "--lcm_model_id",
# type=str,
# help="Model ID or path,Default SimianLuo/LCM_Dreamshaper_v7",
# default="SimianLuo/LCM_Dreamshaper_v7",
# )
# parser.add_argument(
# "--prompt",
# type=str,
# help="Describe the image you want to generate",
# )
# parser.add_argument(
# "--image_height",
# type=int,
# help="Height of the image",
# default=512,
# )
# parser.add_argument(
# "--image_width",
# type=int,
# help="Width of the image",
# default=512,
# )
# parser.add_argument(
# "--inference_steps",
# type=int,
# help="Number of steps,default : 4",
# default=4,
# )
# parser.add_argument(
# "--guidance_scale",
# type=int,
# help="Guidance scale,default : 1.0",
# default=1.0,
# )
# parser.add_argument(
# "--number_of_images",
# type=int,
# help="Number of images to generate ,default : 1",
# default=1,
# )
# parser.add_argument(
# "--seed",
# type=int,
# help="Seed,default : -1 (disabled) ",
# default=-1,
# )
# parser.add_argument(
# "--use_openvino",
# action="store_true",
# help="Use OpenVINO model",
# )
# parser.add_argument(
# "--use_offline_model",
# action="store_true",
# help="Use offline model",
# )
# parser.add_argument(
# "--use_safety_checker",
# action="store_false",
# help="Use safety checker",
# )
# parser.add_argument(
# "--use_lcm_lora",
# action="store_true",
# help="Use LCM-LoRA",
# )
# parser.add_argument(
# "--base_model_id",
# type=str,
# help="LCM LoRA base model ID,Default Lykon/dreamshaper-8",
# default="Lykon/dreamshaper-8",
# )
# parser.add_argument(
# "--lcm_lora_id",
# type=str,
# help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5",
# default="latent-consistency/lcm-lora-sdv1-5",
# )
# parser.add_argument(
# "-i",
# "--interactive",
# action="store_true",
# help="Interactive CLI mode",
# )
# parser.add_argument(
# "--use_tiny_auto_encoder",
# action="store_true",
# help="Use tiny auto encoder for SD (TAESD)",
# )
# args = parser.parse_args()
# if args.version:
# print(APP_VERSION)
# exit()
# parser.print_help()
show_system_info()
print(f"Using device : {constants.DEVICE}")
app_settings = get_settings()
print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt")
print(
f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt"
)
print(
f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt"
)
print(
f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt"
)
app_settings.settings.lcm_diffusion_setting.use_openvino = True
# from frontend.webui.ui import start_webui
# print("Starting web UI mode")
# start_webui(
# args.share,
# )
# app = FastAPI(name="mutilParam")
print("我执行了app.py")
# @app.get("/")
# def root():
# return {"API": "hello"}
# @app.post("/img2img")
# async def predict(prompt=Body(...),imgbase64data=Body(...),negative_prompt=Body(None),userId=Body(None)):
# MAX_QUEUE_SIZE = 4
# start = time.time()
# print("参数",imgbase64data,prompt)
# image_data = base64.b64decode(imgbase64data)
# image1 = Image.open(io.BytesIO(image_data))
# w, h = image1.size
# newW = 512
# newH = int(h * newW / w)
# img = image1.resize((newW, newH))
# end1 = time.time()
# now = datetime.now()
# print(now)
# print("图像:", img.size)
# print("加载管道:", end1 - start)
# global previous_height, previous_width, previous_model_id, previous_num_of_images, app_settings
# app_settings.settings.lcm_diffusion_setting.prompt = prompt
# app_settings.settings.lcm_diffusion_setting.negative_prompt = negative_prompt
# app_settings.settings.lcm_diffusion_setting.init_image = image1
# app_settings.settings.lcm_diffusion_setting.strength = 0.6
# app_settings.settings.lcm_diffusion_setting.diffusion_task = (
# DiffusionTask.image_to_image.value
# )
# model_id = app_settings.settings.lcm_diffusion_setting.openvino_lcm_model_id
# reshape = False
# app_settings.settings.lcm_diffusion_setting.image_height=newH
# image_width = app_settings.settings.lcm_diffusion_setting.image_width
# image_height = app_settings.settings.lcm_diffusion_setting.image_height
# num_images = app_settings.settings.lcm_diffusion_setting.number_of_images
# reshape = is_reshape_required(
# previous_width,
# image_width,
# previous_height,
# image_height,
# previous_model_id,
# model_id,
# previous_num_of_images,
# num_images,
# )
# with ThreadPoolExecutor(max_workers=1) as executor:
# future = executor.submit(
# context.generate_text_to_image,
# app_settings.settings,
# reshape,
# DEVICE,
# )
# images = future.result()
# previous_width = image_width
# previous_height = image_height
# previous_model_id = model_id
# previous_num_of_images = num_images
# output_image = images[0]
# end2 = time.time()
# print("测试",output_image)
# print("s生成完成:", end2 - end1)
# # 将图片对象转换为bytes
# image_data = io.BytesIO()
# # 将图像保存到BytesIO对象中,格式为JPEG
# output_image.save(image_data, format='JPEG')
# # 将BytesIO对象的内容转换为字节串
# image_data_bytes = image_data.getvalue()
# output_image_base64 = base64.b64encode(image_data_bytes).decode('utf-8')
# print("完成的图片:", output_image_base64)
# return output_image_base64
# @app.post("/predict")
# async def predict(prompt=Body(...)):
# return f"您好,{prompt}"
|