michaelj's picture
fix
1fa60a0
raw
history blame
1.58 kB
from fastapi import FastAPI,Body
import uvicorn
import json
from PIL import Image
import time
from constants import DESCRIPTION, LOGO
from model import get_pipeline
from utils import replace_background
from diffusers.utils import load_image
import base64
import io
app = FastAPI(name="mutilParam")
pipeline = get_pipeline()
#Endpoints
#Root endpoints
@app.get("/")
def root():
return {"API": "Sum of 2 Squares"}
@app.post("/img2img")
async def predict(prompt=Body(...),imgbase64data=Body(...)):
MAX_QUEUE_SIZE = 4
start = time.time()
print("参数",imgbase64data,prompt)
image_data = base64.b64decode(imgbase64data)
image1 = Image.open(io.BytesIO(image_data))
w, h = image1.size
newW = 512
newH = int(h * newW / w)
img = image1.resize((newW, newH))
end1 = time.time()
print("图像:", img.size)
print("加载管道:", end1 - start)
result = pipeline(
prompt=prompt,
image=img,
strength=0.6,
seed=10,
width=256,
height=256,
guidance_scale=1,
num_inference_steps=4,
)
output_image = result.images[0]
end2 = time.time()
print("测试",output_image)
print("s生成完成:", end2 - end1)
# 将图片对象转换为bytes
output_image_base64 = base64.b64encode(output_image.tobytes()).decode()
fullbase="data:image/jpeg;base64,"+output_image_base64
print("完成的图片:", fullbase)
return output_image_base64
@app.post("/predict")
async def predict(prompt=Body(...)):
return f"您好,{prompt}"