Spaces:
Sleeping
Sleeping
from fastapi import FastAPI,Body | |
import uvicorn | |
import json | |
from PIL import Image | |
import time | |
from constants import DESCRIPTION, LOGO | |
from model import get_pipeline | |
from utils import replace_background | |
from diffusers.utils import load_image | |
import base64 | |
import io | |
from datetime import datetime | |
app = FastAPI(name="mutilParam") | |
pipeline = get_pipeline() | |
#Endpoints | |
#Root endpoints | |
def root(): | |
return {"API": "Sum of 2 Squares"} | |
async def predict(prompt=Body(...),imgbase64data=Body(...)): | |
MAX_QUEUE_SIZE = 4 | |
start = time.time() | |
pipeline = get_pipeline() | |
url = "https://img2.baidu.com/it/u=1845675188,2679793929&fm=253&fmt=auto&app=138&f=JPEG?w=667&h=500" | |
prompt = "a nice Comfortable and clean. According to Baidu Education Information, the adjectives for a room include: comfortable, clean, beautiful, spacious, warm, quiet, luxurious, pleasant, exquisite, and warm ,colorful, light room width sofa,8k" | |
init_image = load_image(url).convert("RGB") | |
# image1 = replace_background(init_image.resize((256, 256))) | |
w, h = init_image.size | |
newW = 512 | |
newH = int(h * newW / w) | |
img = init_image.resize((newW, newH)) | |
end1 = time.time() | |
print("加载管道:", end1 - start) | |
result = pipeline( | |
prompt=prompt, | |
image=img, | |
strength=0.6, | |
seed=10, | |
width=512, | |
height=512, | |
guidance_scale=1, | |
num_inference_steps=4, | |
) | |
output_image = result.images[0] | |
end2 = time.time() | |
print("测试",output_image) | |
print("s生成完成:", end2 - end1) | |
end2 = time.time() | |
print("测试",output_image) | |
print("s生成完成:", end2 - end1) | |
# 将图片对象转换为bytes | |
end3 = time.time() | |
output_image_base64 = base64.b64encode(output_image.tobytes()).decode() | |
print("完成的图片:", output_image_base64) | |
print("图像转换时间:", end3 - end2) | |
return output_image_base64 | |
async def predict(prompt=Body(...)): | |
return f"您好,{prompt}" | |