Spaces:
Sleeping
Sleeping
# https://medium.com/@qacheampong/building-and-deploying-a-fastapi-app-with-hugging-face-9210e9b4a713 | |
# https://huggingface.co/spaces/Queensly/FastAPI_in_Docker | |
from fastapi import FastAPI,Request | |
import uvicorn | |
import json | |
from PIL import Image | |
import time | |
from constants import DESCRIPTION, LOGO | |
from model import get_pipeline | |
from utils import replace_background | |
from diffusers.utils import load_image | |
import base64 | |
app = FastAPI() | |
pipeline = get_pipeline() | |
#Endpoints | |
#Root endpoints | |
def root(): | |
return {"API": "Sum of 2 Squares"} | |
async def predict(url:str,prompt:str): | |
MAX_QUEUE_SIZE = 4 | |
start = time.time() | |
url = "https://img2.baidu.com/it/u=1845675188,2679793929&fm=253&fmt=auto&app=138&f=JPEG?w=667&h=500" | |
prompt = "a nice Comfortable and clean. According to Baidu Education Information, the adjectives for a room include: comfortable, clean, beautiful, spacious, warm, quiet, luxurious, pleasant, exquisite, and warm ,colorful, light room width sofa,8k" | |
init_image = load_image(url).convert("RGB") | |
# image1 = replace_background(init_image.resize((256, 256))) | |
w, h = init_image.size | |
newW = 512 | |
newH = int(h * newW / w) | |
img = init_image.resize((newW, newH)) | |
end1 = time.time() | |
print("加载管道:", end1 - start) | |
result = pipeline( | |
prompt=prompt, | |
image=img, | |
strength=0.6, | |
seed=10, | |
width=256, | |
height=256, | |
guidance_scale=1, | |
num_inference_steps=4, | |
) | |
output_image = result.images[0] | |
end2 = time.time() | |
print("测试",output_image) | |
print("s生成完成:", end2 - end1) | |
output_image.save("./imageclm5.png") | |
# 将图片对象转换为bytes | |
image_bytes = output_image.to_bytes() | |
# 对bytes进行base64编码 | |
encoded_string = base64.b64encode(image_bytes).decode('utf-8') | |
return encoded_string | |
async def predict(request:Request): | |
body = await request.body() | |
data = json.loads(body) | |
prompt = data.get("prompt") | |
return f"您好,{prompt}" | |