Spaces:
Sleeping
Sleeping
from app_settings import AppSettings | |
from utils import show_system_info | |
import constants | |
from argparse import ArgumentParser | |
from context import Context | |
from constants import APP_VERSION, LCM_DEFAULT_MODEL_OPENVINO | |
from models.interface_types import InterfaceType | |
from constants import DEVICE | |
from state import get_settings | |
import traceback | |
from fastapi import FastAPI,Body | |
import uvicorn | |
import json | |
import logging | |
from PIL import Image | |
import time | |
from diffusers.utils import load_image | |
import base64 | |
import io | |
from datetime import datetime | |
from typing import Any | |
from backend.models.lcmdiffusion_setting import DiffusionTask | |
from frontend.utils import is_reshape_required | |
from concurrent.futures import ThreadPoolExecutor | |
context = Context(InterfaceType.WEBUI) | |
previous_width = 0 | |
previous_height = 0 | |
previous_model_id = "" | |
previous_num_of_images = 0 | |
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}") | |
parser.add_argument( | |
"-s", | |
"--share", | |
action="store_true", | |
help="Create sharable link(Web UI)", | |
required=False, | |
) | |
group = parser.add_mutually_exclusive_group(required=False) | |
group.add_argument( | |
"-g", | |
"--gui", | |
action="store_true", | |
help="Start desktop GUI", | |
) | |
group.add_argument( | |
"-w", | |
"--webui", | |
action="store_true", | |
help="Start Web UI", | |
) | |
group.add_argument( | |
"-r", | |
"--realtime", | |
action="store_true", | |
help="Start realtime inference UI(experimental)", | |
) | |
group.add_argument( | |
"-v", | |
"--version", | |
action="store_true", | |
help="Version", | |
) | |
parser.add_argument( | |
"--lcm_model_id", | |
type=str, | |
help="Model ID or path,Default SimianLuo/LCM_Dreamshaper_v7", | |
default="SimianLuo/LCM_Dreamshaper_v7", | |
) | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
help="Describe the image you want to generate", | |
) | |
parser.add_argument( | |
"--image_height", | |
type=int, | |
help="Height of the image", | |
default=512, | |
) | |
parser.add_argument( | |
"--image_width", | |
type=int, | |
help="Width of the image", | |
default=512, | |
) | |
parser.add_argument( | |
"--inference_steps", | |
type=int, | |
help="Number of steps,default : 4", | |
default=4, | |
) | |
parser.add_argument( | |
"--guidance_scale", | |
type=int, | |
help="Guidance scale,default : 1.0", | |
default=1.0, | |
) | |
parser.add_argument( | |
"--number_of_images", | |
type=int, | |
help="Number of images to generate ,default : 1", | |
default=1, | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
help="Seed,default : -1 (disabled) ", | |
default=-1, | |
) | |
parser.add_argument( | |
"--use_openvino", | |
action="store_true", | |
help="Use OpenVINO model", | |
) | |
parser.add_argument( | |
"--use_offline_model", | |
action="store_true", | |
help="Use offline model", | |
) | |
parser.add_argument( | |
"--use_safety_checker", | |
action="store_false", | |
help="Use safety checker", | |
) | |
parser.add_argument( | |
"--use_lcm_lora", | |
action="store_true", | |
help="Use LCM-LoRA", | |
) | |
parser.add_argument( | |
"--base_model_id", | |
type=str, | |
help="LCM LoRA base model ID,Default Lykon/dreamshaper-8", | |
default="Lykon/dreamshaper-8", | |
) | |
parser.add_argument( | |
"--lcm_lora_id", | |
type=str, | |
help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5", | |
default="latent-consistency/lcm-lora-sdv1-5", | |
) | |
parser.add_argument( | |
"-i", | |
"--interactive", | |
action="store_true", | |
help="Interactive CLI mode", | |
) | |
parser.add_argument( | |
"--use_tiny_auto_encoder", | |
action="store_true", | |
help="Use tiny auto encoder for SD (TAESD)", | |
) | |
args = parser.parse_args() | |
if args.version: | |
print(APP_VERSION) | |
exit() | |
# parser.print_help() | |
show_system_info() | |
print(f"Using device : {constants.DEVICE}") | |
app_settings = get_settings() | |
print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt") | |
print( | |
f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt" | |
) | |
print( | |
f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt" | |
) | |
print( | |
f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt" | |
) | |
app_settings.settings.lcm_diffusion_setting.use_openvino = True | |
# from frontend.webui.ui import start_webui | |
# print("Starting web UI mode") | |
# start_webui( | |
# args.share, | |
# ) | |
app = FastAPI(name="mutilParam") | |
print("我执行了") | |
def root(): | |
return {"API": "hello"} | |
async def predict(prompt=Body(...),imgbase64data=Body(...),negative_prompt=Body(None),userId=Body(None)): | |
MAX_QUEUE_SIZE = 4 | |
start = time.time() | |
print("参数",imgbase64data,prompt) | |
image_data = base64.b64decode(imgbase64data) | |
image1 = Image.open(io.BytesIO(image_data)) | |
w, h = image1.size | |
newW = 512 | |
newH = int(h * newW / w) | |
img = image1.resize((newW, newH)) | |
end1 = time.time() | |
now = datetime.now() | |
print(now) | |
print("图像:", img.size) | |
print("加载管道:", end1 - start) | |
global previous_height, previous_width, previous_model_id, previous_num_of_images, app_settings | |
app_settings.settings.lcm_diffusion_setting.prompt = prompt | |
app_settings.settings.lcm_diffusion_setting.negative_prompt = negative_prompt | |
app_settings.settings.lcm_diffusion_setting.init_image = img | |
app_settings.settings.lcm_diffusion_setting.strength = 0.6 | |
app_settings.settings.lcm_diffusion_setting.diffusion_task = ( | |
DiffusionTask.image_to_image.value | |
) | |
model_id = app_settings.settings.lcm_diffusion_setting.openvino_lcm_model_id | |
reshape = False | |
app_settings.settings.lcm_diffusion_setting.image_height=newH | |
image_width = app_settings.settings.lcm_diffusion_setting.image_width | |
image_height = app_settings.settings.lcm_diffusion_setting.image_height | |
num_images = app_settings.settings.lcm_diffusion_setting.number_of_images | |
reshape = is_reshape_required( | |
previous_width, | |
image_width, | |
previous_height, | |
image_height, | |
previous_model_id, | |
model_id, | |
previous_num_of_images, | |
num_images, | |
) | |
with ThreadPoolExecutor(max_workers=1) as executor: | |
future = executor.submit( | |
context.generate_text_to_image, | |
app_settings.settings, | |
reshape, | |
DEVICE, | |
) | |
images = future.result() | |
previous_width = image_width | |
previous_height = image_height | |
previous_model_id = model_id | |
previous_num_of_images = num_images | |
output_image = images[0] | |
end2 = time.time() | |
print("测试",output_image) | |
print("s生成完成:", end2 - end1) | |
# 将图片对象转换为bytes | |
image_data = io.BytesIO() | |
# 将图像保存到BytesIO对象中,格式为JPEG | |
output_image.save(image_data, format='JPEG') | |
# 将BytesIO对象的内容转换为字节串 | |
image_data_bytes = image_data.getvalue() | |
output_image_base64 = base64.b64encode(image_data_bytes).decode('utf-8') | |
print("完成的图片:", output_image_base64) | |
return output_image_base64 | |
async def predict(prompt=Body(...)): | |
return f"您好,{prompt}" | |