File size: 5,350 Bytes
7e0376e
 
 
 
 
 
 
 
 
a9e44d5
7e0376e
 
ac7cfc6
7e0376e
 
 
 
 
 
 
 
 
ac7cfc6
 
7e0376e
 
 
 
 
23e4ec1
7e0376e
 
 
 
 
 
23e4ec1
 
7e0376e
 
 
23e4ec1
7e0376e
 
 
ac7cfc6
7e0376e
946d0a6
b88f82b
ac7cfc6
 
 
 
 
 
a9e44d5
 
ac7cfc6
 
 
 
 
 
 
 
7e0376e
 
 
 
 
23e4ec1
7e0376e
23e4ec1
7e0376e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac7cfc6
 
 
 
 
 
 
7e0376e
 
 
ac7cfc6
 
 
7e0376e
 
ac7cfc6
 
 
 
fbbd4eb
 
ac7cfc6
a9e44d5
 
 
ac7cfc6
 
 
 
 
 
 
 
 
 
 
 
 
a9e44d5
 
ac7cfc6
 
a9e44d5
 
ac7cfc6
a9e44d5
7e0376e
 
 
 
 
 
ac7cfc6
 
7e0376e
78efa10
d7d97a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import logging
import os
import tempfile
import time
import gradio as gr
import numpy as np
import rembg
import torch
from PIL import Image
from functools import partial
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
import argparse
if torch.cuda.is_available():
    device = "cuda:0"
else:
    device = "cpu"
model = TSR.from_pretrained(
    "stabilityai/TripoSR",
    config_name="config.yaml",
    weight_name="model.ckpt",
)
# adjust the chunk size to balance between speed and memory usage
model.renderer.set_chunk_size(8192)
model.to(device)
rembg_session = rembg.new_session()
def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")
def preprocess(input_image, do_remove_background, foreground_ratio):
    def fill_background(image):
        image = np.array(image).astype(np.float32) / 255.0
        image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
        image = Image.fromarray((image * 255.0).astype(np.uint8))
        return image
    if do_remove_background:
        image = input_image.convert("RGB")
        image = remove_background(image, rembg_session)
        image = resize_foreground(image, foreground_ratio)
        image = fill_background(image)
    else:
        image = input_image
        if image.mode == "RGBA":
            image = fill_background(image)
    return image
def generate(image, mc_resolution, formats=["obj", "glb"]):
    scene_codes = model(image, device=device)
    mesh = model.extract_mesh(scene_codes, resolution=1024)[0]
    mesh = to_gradio_3d_orientation(mesh)
    rv = []
    for format in formats:
        mesh_path = tempfile.NamedTemporaryFile(suffix=f".{format}", delete=False)
        mesh.export(mesh_path.name)
        rv.append(mesh_path.name)
    return rv
def run_example(image_pil):
    preprocessed = preprocess(image_pil, False, 0.9)
    mesh_name_obj, mesh_name_glb = generate(preprocessed, 256, ["obj", "glb"])
    return preprocessed, mesh_name_obj, mesh_name_glb
with gr.Blocks(title="TripoSR") as demo:
    gr.Markdown(
        """
        图像生成3d模型
        """
    )
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                input_image = gr.Image(
                    label="Input Image",
                    image_mode="RGBA",
                    sources="upload",
                    type="pil",
                    elem_id="content_image",
                )
                processed_image = gr.Image(label="Processed Image", interactive=False)
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Remove Background", value=True
                    )
                    foreground_ratio = gr.Slider(
                        label="Foreground Ratio",
                        minimum=0.5,
                        maximum=1.0,
                        value=0.85,
                        step=0.05,
                    )
                    mc_resolution = gr.Slider(
                        label="Marching Cubes Resolution",
                        minimum=32,
                        maximum=1024,
                        value=256,
                        step=32
                    )
            with gr.Row():
                submit = gr.Button("Generate", elem_id="generate", variant="primary")
        with gr.Column():
            with gr.Tab("OBJ"):
                output_model_obj = gr.Model3D(
                    label="Output Model (OBJ Format)",
                    interactive=False,
                )
                gr.Markdown("Note: The model shown here is flipped. Download to get correct results.")
            with gr.Tab("GLB"):
                output_model_glb = gr.Model3D(
                    label="Output Model (GLB Format)",
                    interactive=False,
                )
                gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
    with gr.Row(variant="panel"):
        gr.Examples(
            examples=[
                "examples/hamburger.png",
                "examples/poly_fox.png",
                "examples/robot.png",
                "examples/teapot.png",
                "examples/tiger_girl.png",
                "examples/horse.png",
                "examples/flamingo.png",
                "examples/unicorn.png",
                "examples/chair.png",
                "examples/iso_house.png",
                "examples/marble.png",
                "examples/police_woman.png",
                "examples/captured.jpeg",
            ],
            inputs=[input_image],
            outputs=[processed_image, output_model_obj, output_model_glb],
            cache_examples=False,
            fn=partial(run_example),
            label="Examples",
            examples_per_page=20,
        )
    submit.click(fn=check_input_image, inputs=[input_image]).success(
        fn=preprocess,
        inputs=[input_image, do_remove_background, foreground_ratio],
        outputs=[processed_image],
    ).success(
        fn=generate,
        inputs=[processed_image, mc_resolution],
        outputs=[output_model_obj, output_model_glb],
    )
demo.queue(max_size=10)
demo.launch()