File size: 8,521 Bytes
ff49a48
d08dc68
ff49a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08dc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff49a48
d08dc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff49a48
 
 
 
 
 
 
 
 
 
 
d08dc68
 
 
ff49a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from dataclasses import dataclass, field
from typing import Dict, Optional

import torch
import torch.nn.functional as F
from einops import rearrange, reduce

from ..utils import (
    BaseModule,
    chunk_batch,
    get_activation,
    rays_intersect_bbox,
    scale_tensor,
)


class TriplaneNeRFRenderer(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        radius: float

        feature_reduction: str = "concat"
        density_activation: str = "trunc_exp"
        density_bias: float = -1.0
        color_activation: str = "sigmoid"
        num_samples_per_ray: int = 128
        randomized: bool = False

    cfg: Config

    def configure(self) -> None:
        assert self.cfg.feature_reduction in ["concat", "mean"]
        self.chunk_size = 0

    def set_chunk_size(self, chunk_size: int):
        assert (
            chunk_size >= 0
        ), "chunk_size must be a non-negative integer (0 for no chunking)."
        self.chunk_size = chunk_size
     def make_step_grid(self,device, resolution: int, chunk_size: int = 32):
        coords = torch.linspace(-1.0, 1.0, resolution, device = device)
        x, y, z = torch.meshgrid(coords[0:chunk_size], coords, coords, indexing="ij")
        x = x.reshape(-1, 1)
        y = y.reshape(-1, 1)
        z = z.reshape(-1, 1)
        verts = torch.cat([x, y, z], dim = -1).view(-1, 3)
        indices2D: torch.Tensor = torch.stack(
            (verts[..., [0, 1]], verts[..., [0, 2]], verts[..., [1, 2]]),
            dim=-3,
        )
        return indices2D

    def query_triplane_volume_density(self, decoder: torch.nn.Module, triplane: torch.Tensor, resolution: int, sample_count: int = 1024 * 1024 * 4) -> torch.Tensor:
        layer_count = sample_count // (resolution * resolution)
        out_list = self.do_query_triplane_volume_density(decoder, triplane, resolution, layer_count)
        return get_activation(self.cfg.density_activation)(
            out_list.view([resolution * resolution * resolution, 1]) + self.cfg.density_bias
        )
    def do_query_triplane_volume_density(self, decoder: torch.nn.Module, triplane: torch.Tensor, resolution: int, layer_count: int) -> torch.Tensor:
        step = 2.0 * layer_count / (resolution - 1)
        indices2D = self.make_step_grid(triplane.device, resolution, layer_count)

        out_list = torch.zeros([resolution, resolution * resolution, 1], device = triplane.device
                               )
        for i in range(0, resolution, layer_count):
            if i + layer_count > resolution:
                layer_count = resolution - i
                indices2D = indices2D[..., :resolution * resolution * layer_count, :]
            density_step = self.sample_step_triplane_volume_density(decoder, triplane, indices2D)
            # todo directly march cube
            out_list[i:i + layer_count] = density_step.view([layer_count, resolution * resolution, 1])
            #out_list.append(net_out['density'])
            indices2D.transpose(1, 2)[0, 0] += step
            indices2D.transpose(1, 2)[1, 0] += step

        return out_list
    def sample_step_triplane_volume_density(self, decoder, triplane, indices2D):
        out: torch.Tensor = F.grid_sample(
            rearrange(triplane, "Np Cp Hp Wp -> Np Cp Hp Wp", Np=3),
            rearrange(indices2D, "Np N Nd -> Np () N Nd", Np=3),
            align_corners=False,
            mode="bilinear",
        )
        if self.cfg.feature_reduction == "concat":
            out = rearrange(out, "Np Cp () N -> N (Np Cp)", Np=3)
        elif self.cfg.feature_reduction == "mean":
            out = reduce(out, "Np Cp () N -> N Cp", Np=3, reduction="mean")
        else:
            raise NotImplementedError

        net_out: Dict[str, torch.Tensor] = decoder(out)
        return net_out['density']
    def query_triplane(
        self,
        decoder: torch.nn.Module,
        positions: torch.Tensor,
        triplane: torch.Tensor,
    ) -> Dict[str, torch.Tensor]:
        input_shape = positions.shape[:-1]
        positions = positions.view(-1, 3)

        # positions in (-radius, radius)
        # normalized to (-1, 1) for grid sample
        #positions = scale_tensor(
        #    positions, (-self.cfg.radius, self.cfg.radius), (-1, 1)
        #)

        def _query_chunk(x):
            indices2D: torch.Tensor = torch.stack(
                (x[..., [0, 1]], x[..., [0, 2]], x[..., [1, 2]]),
                dim=-3,
            )
            out: torch.Tensor = F.grid_sample(
                rearrange(triplane, "Np Cp Hp Wp -> Np Cp Hp Wp", Np=3),
                rearrange(indices2D, "Np N Nd -> Np () N Nd", Np=3),
                align_corners=False,
                mode="bilinear",
            )
            if self.cfg.feature_reduction == "concat":
                out = rearrange(out, "Np Cp () N -> N (Np Cp)", Np=3)
            elif self.cfg.feature_reduction == "mean":
                out = reduce(out, "Np Cp () N -> N Cp", Np=3, reduction="mean")
            else:
                raise NotImplementedError

            net_out: Dict[str, torch.Tensor] = decoder(out)
            return net_out

        if self.chunk_size > 0:
            net_out = chunk_batch(_query_chunk, self.chunk_size, positions)
        else:
            net_out = _query_chunk(positions)

        net_out["density_act"] = get_activation(self.cfg.density_activation)(
            net_out["density"] + self.cfg.density_bias
        )
        net_out["color"] = get_activation(self.cfg.color_activation)(
            net_out["features"]
        )

        net_out = {k: v.view(*input_shape, -1) for k, v in net_out.items()}

        return net_out

    def _forward(
        self,
        decoder: torch.nn.Module,
        triplane: torch.Tensor,
        rays_o: torch.Tensor,
        rays_d: torch.Tensor,
        **kwargs,
    ):
        rays_shape = rays_o.shape[:-1]
        rays_o = rays_o.view(-1, 3)
        rays_d = rays_d.view(-1, 3)
        n_rays = rays_o.shape[0]

        t_near, t_far, rays_valid = rays_intersect_bbox(rays_o, rays_d, self.cfg.radius)
        t_near, t_far = t_near[rays_valid], t_far[rays_valid]

        t_vals = torch.linspace(
            0, 1, self.cfg.num_samples_per_ray + 1, device=triplane.device
        )
        t_mid = (t_vals[:-1] + t_vals[1:]) / 2.0
        z_vals = t_near * (1 - t_mid[None]) + t_far * t_mid[None]  # (N_rays, N_samples)

        xyz = (
            rays_o[:, None, :] + z_vals[..., None] * rays_d[..., None, :]
        )  # (N_rays, N_sample, 3)

        mlp_out = self.query_triplane(
            decoder=decoder,
            positions=xyz,
            triplane=triplane,
        )

        eps = 1e-10
        # deltas = z_vals[:, 1:] - z_vals[:, :-1] # (N_rays, N_samples)
        deltas = t_vals[1:] - t_vals[:-1]  # (N_rays, N_samples)
        alpha = 1 - torch.exp(
            -deltas * mlp_out["density_act"][..., 0]
        )  # (N_rays, N_samples)
        accum_prod = torch.cat(
            [
                torch.ones_like(alpha[:, :1]),
                torch.cumprod(1 - alpha[:, :-1] + eps, dim=-1),
            ],
            dim=-1,
        )
        weights = alpha * accum_prod  # (N_rays, N_samples)
        comp_rgb_ = (weights[..., None] * mlp_out["color"]).sum(dim=-2)  # (N_rays, 3)
        opacity_ = weights.sum(dim=-1)  # (N_rays)

        comp_rgb = torch.zeros(
            n_rays, 3, dtype=comp_rgb_.dtype, device=comp_rgb_.device
        )
        opacity = torch.zeros(n_rays, dtype=opacity_.dtype, device=opacity_.device)
        comp_rgb[rays_valid] = comp_rgb_
        opacity[rays_valid] = opacity_

        comp_rgb += 1 - opacity[..., None]
        comp_rgb = comp_rgb.view(*rays_shape, 3)

        return comp_rgb

    def forward(
        self,
        decoder: torch.nn.Module,
        triplane: torch.Tensor,
        rays_o: torch.Tensor,
        rays_d: torch.Tensor,
    ) -> Dict[str, torch.Tensor]:
        if triplane.ndim == 4:
            comp_rgb = self._forward(decoder, triplane, rays_o, rays_d)
        else:
            comp_rgb = torch.stack(
                [
                    self._forward(decoder, triplane[i], rays_o[i], rays_d[i])
                    for i in range(triplane.shape[0])
                ],
                dim=0,
            )

        return comp_rgb

    def train(self, mode=True):
        self.randomized = mode and self.cfg.randomized
        return super().train(mode=mode)

    def eval(self):
        self.randomized = False
        return super().eval()