michaelmc1618 commited on
Commit
8cd8a06
·
verified ·
1 Parent(s): 3f59042

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -44
app.py CHANGED
@@ -1,60 +1,34 @@
1
  import os
2
  import pandas as pd
3
  import gradio as gr
4
- from huggingface_hub import InferenceClient
5
  from transformers import pipeline
6
 
7
- # Install necessary dependencies
8
- os.system('pip install transformers gradio requests pandas')
9
-
10
- # Inference client for chat completion using GPT-4
11
- client = InferenceClient("openai/gpt-4")
12
-
13
- # Different pipelines for different tasks
14
  qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
15
 
16
- def respond(message, system_message, max_tokens, temperature, top_p):
17
- messages = [
18
- {"role": "system", "content": system_message},
19
- {"role": "user", "content": message}
20
- ]
21
-
22
- response = ""
23
- try:
24
- for message in client.chat_completion(
25
- messages=messages,
26
- max_tokens=max_tokens,
27
- stream=True,
28
- temperature=temperature,
29
- top_p=top_p
30
- ):
31
- token = message.choices[0].delta.get("content", "")
32
- if token:
33
- response += token
34
- except Exception as e:
35
- return f"Error during chat completion: {str(e)}"
36
-
37
- return response
38
-
39
  # GDPR Compliance Expert
40
  def evaluate_gdpr_compliance(audit_data):
41
- system_message = (
42
- "You are an expert GDPR compliance officer. Assess the audit data for compliance with GDPR regulations. "
43
- "Provide an analysis that identifies any compliance issues and suggestions for remediation. "
44
- "Ensure a thorough evaluation of data processing, storage, and protection practices in line with GDPR requirements."
45
  )
46
- compliance_analysis = respond(audit_data, system_message, max_tokens=1024, temperature=0.7, top_p=0.95)
47
- return compliance_analysis
 
 
48
 
49
  # PCI Compliance Expert
50
  def evaluate_pci_compliance(audit_data):
51
- system_message = (
52
- "You are an expert PCI compliance officer. Assess the audit data for compliance with PCI DSS regulations. "
53
- "Provide an analysis that identifies any compliance issues and suggestions for remediation. "
54
- "Ensure a thorough evaluation of payment card data security, storage, and processing practices in line with PCI requirements."
55
  )
56
- compliance_analysis = respond(audit_data, system_message, max_tokens=1024, temperature=0.7, top_p=0.95)
57
- return compliance_analysis
 
 
58
 
59
  # Analyze CSV file input
60
  def analyze_csv_file(file_obj):
@@ -66,7 +40,13 @@ def analyze_csv_file(file_obj):
66
 
67
  # Convert DataFrame to dictionary for processing
68
  audit_data = df.to_dict(orient='records')
69
- return audit_data
 
 
 
 
 
 
70
 
71
  # Custom CSS for the specified theme
72
  custom_css = """
 
1
  import os
2
  import pandas as pd
3
  import gradio as gr
 
4
  from transformers import pipeline
5
 
6
+ # Initialize the question-answering pipeline with the 'deepset/roberta-base-squad2' model
 
 
 
 
 
 
7
  qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  # GDPR Compliance Expert
10
  def evaluate_gdpr_compliance(audit_data):
11
+ # Example question for GDPR compliance
12
+ question = (
13
+ "Based on the provided audit data, are there any compliance issues related to the GDPR regulations? "
14
+ "Evaluate the data processing, storage, and protection practices."
15
  )
16
+
17
+ # Apply the question-answering pipeline
18
+ response = qa_pipeline(question=question, context=audit_data)
19
+ return response['answer']
20
 
21
  # PCI Compliance Expert
22
  def evaluate_pci_compliance(audit_data):
23
+ # Example question for PCI DSS compliance
24
+ question = (
25
+ "Based on the provided audit data, are there any compliance issues related to PCI DSS regulations? "
26
+ "Evaluate the payment card data security, storage, and processing practices."
27
  )
28
+
29
+ # Apply the question-answering pipeline
30
+ response = qa_pipeline(question=question, context=audit_data)
31
+ return response['answer']
32
 
33
  # Analyze CSV file input
34
  def analyze_csv_file(file_obj):
 
40
 
41
  # Convert DataFrame to dictionary for processing
42
  audit_data = df.to_dict(orient='records')
43
+
44
+ # Convert the dictionary to a string format suitable for the QA model
45
+ audit_data_str = ""
46
+ for record in audit_data:
47
+ audit_data_str += " ".join([f"{key}: {value}" for key, value in record.items()]) + "\n"
48
+
49
+ return audit_data_str
50
 
51
  # Custom CSS for the specified theme
52
  custom_css = """