Spaces:
Sleeping
Sleeping
File size: 2,568 Bytes
8b780e6 3ebfdcb 222452d 3ebfdcb c78ffbd 8b780e6 3ebfdcb a7a4adb 3ebfdcb 8b780e6 c78ffbd 8b780e6 cdda72d c78ffbd cdda72d 8b780e6 3ebfdcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoModelForCausalLM, pipeline
# Use a pipeline as a high-level helper
pipe = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa", trust_remote_code=True)
# Load model directly
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def process_video(video):
return f"Processing video: {video.name}"
def process_pdf(pdf):
return f"Processing PDF: {pdf.name}"
def process_image(image):
return f"Processing image: {image.name}"
video_upload = gr.Interface(fn=process_video, inputs=gr.Video(), outputs="text", title="Upload a Video")
pdf_upload = gr.Interface(fn=process_pdf, inputs=gr.File(file_types=['.pdf']), outputs="text", title="Upload a PDF")
image_upload = gr.Interface(fn=process_image, inputs=gr.Image(), outputs="text", title="Upload an Image")
tabbed_interface = gr.TabbedInterface([video_upload, pdf_upload, image_upload], ["Video", "PDF", "Image"])
demo = gr.Blocks()
with demo:
with gr.Tab("Chat Interface"):
gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
with gr.Tab("Upload Files"):
tabbed_interface
if __name__ == "__main__":
demo.launch()
|